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Preface

With the birth of the electronic hand calculator and the death of the slide rule,
the teaching of general chemistry entered a new era. Unfortunately, the cal-
culator did not bring automatic understanding of chemistry; analyzing and solv-
ing problemsisjust as difficult as ever. The need for detailed explanations, drill,
and review problems is still with us.

The calculator came on the scenejust as society was beginning to make major
decisions based on statistical evidence. Which chemicals are "safe" and "non-
carcinogenic'? At what level is a given pollutant ‘*harmful’’? More and more
the chemist must decide what constitutes risk, and that decision is based on
statistics. New analytical techniques can detect incredibly small amounts of
materials, and the results of these analyses must be judged statistically. Stu-
dents need to start as early as they can to think critically and with statistical
understanding about their own work and that of others. The hand calculator
makes it relatively easy to determine statistical significance, to plot data prop-
erly by the method of least squares, and to evaluate the reliability of quantities
related to the slope and y intercept of such aplot. This book takes into account
the impact of the calculator. It shows beginners how to use calculators effec-
tively and, as they progress, to determine whether or not results are statistically
significant.

The text will be useful to those beginning chemistry students who have
difficulty analyzing problems and finding logical solutions, who have trouble



Viii Preface

with graphical representations and interpretation, or who have simply missed
out on such items as logarithms and basic math operations. It will aso be useful
to the student who wants additional problems and explanations in order to gain
a better understanding of concepts and to prepare for exams.

Instructors will find that the book does more than satisfy the self-help and
tutorial needs of students who lack confidence or background preparation. It
will supplement the weaker portions of the selected text and, in general, pro-
vide amuch wider variety of problems. It will enable instructors to devote class
time to a more complete discussion of general principles, because students will
be able to obtain and study the details of problem solving from the book. In
addition, it provides a basis for students to assess the reliability and quality of
their quantitative lab work and explains how to treat data properly in graphical
form and to assess the quality of the quantities derived from their graphs.
Finally, the book presents a logical approach to the sometimes bewildering
business of how to prepare compounds and how to predict whether a given
reaction will occur.

Since Solving General Chemistry Problems is a supplement to the regular text
and lab manual used in abeginning college chemistry course, it has been written
so that chapters can be used in whatever order best suits the adopted text and
the instructor's interests. Whatever interdependence exists between the chap-
ters is the normal interdependence that would be found for similar material in
any text.

Although the use of units is heavily emphasized throughout the text, it was
decided not to make exclusive use of Sl units; almost none of the current texts
do so, and an informal poll of chemistry teachers showed little interest in
making this change. Anyone strongly committed to another view may easily
convert the answers to Sl units or work the problems in whatever units are
desired. The methods of calculation and the analytical approach will not be
affected.

Some instructors may like to know the ways in which thisfifth edition differs
from the fourth. Two major changes are the addition of a chapter on chemical
kinetics (Chapter 15) and the replacement of al the material on dide rules with
a discussion of the efficient use and application of electronic hand calculators.
Chapter 7 no longer considers specific gravity but instead discusses the applica-
tion of bouyancy principles to accurate weighing. Graphical representation in
Chapter 6 has been amplified to include the method of least squares and how to
evaluate thereliability of the slopes and intercepts of best-fit lines. The material
on thermochemistry (Chapter 14) has been expanded to include energy changes
at constant volume as well as at constant pressure. Problems and concepts
related to free energy are considered along with the energy obtained from
electrochemical cells and are related to the entropies and enthalpies of reaction.
Absolute entropies are aso included. The application of Faraday's laws to
electrolytic cells has been separated from the other electrochemical material
and placed in a chapter of its own (Chapter 19). Chapter 9, on the sizes and
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shapes of molecules, now contains a refined set of rules for predicting molecu-
lar shape, and the rules are related to the hybrid orbitals that hold the atoms
together. Even where the approach and general lines of reasoning have
remained the same as in the fourth edition, the text has been substantially
rewritten.

Conway Pierce, coauthor of the first four editions of the book and coauthor of
thefirst four editions of Quantitative Analysis, published by John Wiley & Sons,
died December 23, 1974, Professor Pierce was a valued friend, a stimulating
teacher, and an original researcher whose contributions to chemistry and chem-
ical education spanned more than fifty years. | hope that this edition of the book
reflects the everchanging outlook of general chemistry while retaining the sim-
ple, direct, and clear expression for which Conway Pierce was noted.

R. Nelson Smith
October 1979
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1

Studying and
Thinking About Problems

For many of you, the first course in chemistry will be a new experience—
perhaps a difficult one. To understand chemistry, you will have to work hun-
dreds of problems. For many students, the mathematical side of the course may
seem more difficult than it should, leading to unnecessary frustration. There
appear to be two main sources of this difficulty and frustration; they center
around (1) study habits, and (2) the way you analyze a problem and proceed to
its solution. The following suggestions, taken seriously from the very begin-
ning, may be of great help to you. For most people, improved study habits and
problem-solving skills come only with practice and with a determined effort
spread over a long time. It's worth it.

STUDY HABITS

1. Learn each assignment before going on to a new one. Chemistry has a
vertical structure; that is, new concepts depend on previous material. The
course is cumulative in nature. Don't pass over anything, expecting to learn it
later. And don't postpone study until exam time. The message is this: keep up
to date.

2. Know how to perform the mathematical operations you need in solving
problems. The mathematics used in general chemistry is elementary, involving
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only arithmetic and simple algebra. Nevertheless, if you don't understand it,
you can expect troubles before long. So, before you can really get into chemis
try, you need to master the mathematical operations in the first six chapters.

3. Don't think of your calculator as a security blanket that will bring you
vision, light, and understanding about problems. Y our calculator can minimize
the tedium and time involved in the mechanics of a problem, thus leaving you
more time to think about the problem. And, in principle, there is less likelihood
of your making an arithmetical error with the calculator, but it won't help you
at al in choosing the right method for solution. Many students make a substan-
tial investment in a powerful calculator and then never learn to take advantage
of its power and its time-saving capability. From the very beginning it will pay
you to learn to use this incredible tool well and easily, so that you can devote
your thinking time to understanding the principles and the problems. This book
emphasizes the proper and efficient use of your calculator.

4. Minimize the amount of material you memorize. Limit memorization to
the basic facts and principles from which you can reason the solutions of the
problems. Know this smallish amount of factual material really well; then con-
centrate on how to use it in alogical, effective way. Too many students try to
undertake chemistry with only a rote-memory approach; it can be fatal.

5. Before working homework problems, study pertinent class notes and text
material until you think you fully understand the facts and principles involved.
Try to work the problems without reference to text, class notes, or friendly
assistance. If you can't, then work them with the help of your text or notes, or
work with someone else in the class, or ask an upperclassman or the instructor.
However, then be aware that you have worked the problems with a crutch, and
that it's quite possible you still don't understand them. Try the same or similar
problems again a few days later to see whether you can do them without any
help, as you must do on an exam. Discussion of problems helps to fix principles
in mind and to broaden understanding but, by itself, it doesn't guarantee the
understanding you need to work them.

6. When homework assignments are returned and you find some problems
marked wrong (in spite of your efforts), do something about it soon. Don't
simply glance over the incorrect problem, kick yourself for what you believe to
be a silly error, and assume you now know how to do it correctly. Perhaps it
was just a silly mistake, but there's a good chance it wasn't. Rework the
problem on paper (without help) and check it out. If you can't find the source of
error by yourself, then seek help. There is often as much or more to be learned
from making mistakes (in learning why you can't do things a certain way) as
thereisfrom knowing an acceptable way without full understanding. However,
the time to learn from mistakes is before exams, on homework assignments.

7. In the few days before an examination, go through all the related
homework problems. See if you can classify them into a relatively small num-
ber oftypes of problems. Learn how to recognize each type, and know a simple
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straightforward way to solve that type. Recognition of the problem (not the
mechanics of the solution) often is the biggest difficulty to be overcome. In most
cases, there are only a few types of problems associated with a given topic.

8. Be sure that you understand material, rather thanjust being familiar with
it (there's a huge difference!). See if you can write something about the topic in
a clear, concise, and convincing manner, without any outside assistance. The
act of writing is one of the best ways to fix an idea in your mind, and it is the
same process that you use on an exam. Many students feel that repeated read-
ing of an assignment is al that is needed to learn the material; unfortunately,
that is true for only a few students. Most people will read the words the same
way each time; if real understanding has not occurred by the second or third
reading, further readings probably are a waste of time. Instead of going on to a
fourth reading, search through the text and jot down on a piece of paper the
words representing new concepts, principles, or ideas. Then, with the book
closed, see if you can write a concise "three-sentence essay" on each of these
topics. Thisis an oversimplified approach (and not nearly as easy as it sounds),
but it does sharpen your view and understanding of a topic. It helps you to
express yourself in an exam-like manner at atime when, without penalty, you
can look up the things you don't know. If you need to look up material to write
your essays, then try again afew days later to be sure you can now do it without
help.

PROBLEM SOLVING

1. Understand a problem before you try to work it. Read it carefully, and
don't jump to conclusions. Don't run the risk of misinterpretation. Learn to
recognize the type of problem.

2. If you don't understand some words or terms in the problems, look up
their meaning in the text or a dictionary. Don't just guess.

3. In the case of problems that involve many words or a descriptive situa-
tion, rewrite the problem using a minimum number of words to express the
bare-bones essence of the problem.

4. Some problems give more information than is needed for the solution.
Learn to pick out what is needed and ignore the rest.

5. When appropriate, draw a simple sketch or diagram (with labels) to show
how the different parts are related.

6. Specifically pick out (a) what is given and (b) what is asked for.

7. Look for a relationship (a conceptual principle or a mathematical equa-
tion) between what is given and what is asked for.

8. Set up the problem in aconcise, logical, stepwise manner, using units for
al terms and factors.
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9. Don'ttry to bend all problems into a mindless "proportion" approach that
you may have mastered in elementary grades. There are many kinds of propor-
tion, not just one. Problem solving based on proportions appeals to intuition,
not logic. Its use is a hindrance to intellectual progress in science.

10. Think about your answer. See whether it is expressed in the units that
were asked for, and whether it is reasonable in size for theinformation given. If
not, check back and see if you can locate the trouble.



Number Notations,
Arithmetical Operations,
and Calculators

DECIMAL NOTATION

One common representation of numbers is decimal noration. Typical examples
are such large numbers as 807,267,434.51 and 3,500,000, and such small num-
bers as 0.00055 and 0.0000000000000000248. Decimal notation is often awkward
to use, and it is embarrassingly easy to make foolish mistakes when carrying
out arithmetical operations in this form. Most hand calculators will not accept

extremely large or extremely small numbers through the keyboard in decimal
notation.

SCIENTIFIC NOTATION

Another common, but more sophisticated, representation of numbers is scien-
tific notation. This notation minimizes the tendency to make errors in arithmeti-
cal operations; it is used extensively in chemistry. It is imperative that you be
completely comfortable in using it. Hand calculatorswill accept extremely large
or extremely small numbers through the keyboard in scientific notation. Ready
and proper use of this notation requires a good understanding of the following
paragraphs.

An exponent is a number that shows how many times a given number (called
the base) appears as a factor; exponents are written as superscripts. For exam-
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ple, 102means 10 x 10 = 100. The number 2 is the exponent; the number 10 is
the base, which is said to be raised to the second power. Likewise, 25 means
2Xx2x2x2x2=32 Here5istheexponent, and 2 isthe basethat is raised
to the fifth power.

It is simple to express any number in exponential form as the product of some
other number and a power of 10. For integral (whole) powers of 10, we have 1 =
1x 10°, 10= 1 x 10%, 100 = 1 x 102, 1000 = 1 x 103, and so on. If anumber is
not an integral power of 10, we can express it as the product of two numbers,
with one of the two being an integral power of 10 that we can write in exponen-
tial form. For example, 2000 can be written as 2 x 1000, and then changed to
the exponential form of 2 x 103 The form 2000 is an example of decimal
notation; the equivalent form 2 x 10%is an example of scientific notation.

Notice that in the last example we transformed the expression

2000.0 x 10°
into the expression

20 x 103

Notice that we shifted the decimal point three places to the left, and we aso
increased the exponent on the 10 by the same number, three. In changing the
form of a number but not its value, we always follow this basic rule.

1. Decrease the lefthand factor by moving the decimal point to theleft the
same number of places as you increase the exponent of 10. An example
is 2000 (i.e., 2000 x 10°) converted to 2 x 103

2. Increase the lefthand factor by moving the decimal point to the right
the same number of places as you decrease the exponent of 10. An
example is 0.005 (i.e., 0.005 x 10°) convertedto 5 x 1073.

PROBLEM:
Write 3,500,000 in scientific notation.

SOLUTION:

The decimal point can be set at any convenient place. Suppose we select the
position shown below by the small x, between the digits 3 and 5. This gives as the
first step

3,500.000

Because we are moving the decimal point 6 places to the left, the exponent on 10°
must be increased by 6, and so the answer is

35 x 108
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The number 3 5 x 108 might equally well be written as 35 x 103, 350 x 10%, or
0 35 x 107,and so on All of these forms are equivalent, for each calculation, we
could arbitrarily set the decimal point at the most convenient place However,
the convention 1s to leave the lefthand number in the range between 1 and
10—that 1s, with a single digit before the decimal point This form 1s known as
standard scientific notation

PROBLEM:
Write the number 0 00055 1n standard scientific notation

SOLUTION:
We want to set the decimal point after the first 5 as indicated by the small v

0 00055

Because we are thus moving the decimal point four places to the right we must
decrease the exponent on the 10° by 4 Therefore the scientific notationis 55 x
104

You must be able to enter numbers easily and unerringly into your calculator
using scientific notation With most calculators, thus would be accomplished as

follows.

1

Write the number 1n standard scientific notation Standard notation
isn't required, but 1t 1s a good habit to acquire

Enter the lefthand factor through the keyboard
Press the exponent key (common key symbols are EEX and EE)

Enter the exponent of 10 through the keyboard If the exponent is
negative, also press the "change sign’’ key (common symbols are CHS
and +/-) It 1s important that you don t press the - key (1e, the
subtract key)

The lefthand factor of the desired scientific notation will occupy the
lefthand side of the lighted display, while the three spaces at the right-
hand end of the display will show the exponent (a blank space followed
by two digits for a positive exponent, or a minus sign followed by two
digits for a negative exponent If the exponent 1s less than 10, the first
digit will be a 0—for example, 03 for 3)

Some calculators make 1t possible for you to choose in advance that all
results be displayed in scientific notation (or decimal notation), regardless of
which notation you use for entering numbers You can also choose how many
decimal places (usually up to a maximum of 8) will be displayed in decimal
notation, or in the lefthand factor of scientific notation If your calculator has
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this capability, you should learn to take advantage of it. [If you try to enter, in
decimal notation, numbers that are too large (for many calculators, greater than
99,999,999) or too small (for many calculators, less than 0.00000001), you will
find that not al of the digits are displayed for the large numbers, and that only 0
or only part of the digits is displayed for the small humbers. To avoid such
errors, determine for your calculator the limits for entry by decimal notation.
With most calculators, any number from 9.99999999 x 10%to 1 x 10% can be
entered in scientific notation.]

MATH OPERATIONS IN SCIENTIFIC NOTATION

To use the scientific notation of numbers in mathematical operations, we must
remember the laws of exponents.

1. Multiplication Xo e Xxb = xotb

L Xe _
2. Division 5o Xe-o
3. Powers (Xb= xab
4. Roots VXa= xab

Because b (ora) can be a negative number, thefirst two laws are actually the
same. Because b can be a fraction, the third and fourth also are actually the
same. That is, X = 1/X*,and XV? = VX.

In practice, we perform mathematical operations on numbers in scientific
notation according to the simple rules that follow. It is not necessary to know
these rules when calculations are done with a calculator (you need only know
how to enter numbers), but many calculations are so simple that no calculator is
needed, and you should be able to handle these operations when your cal-
culator is broken down or not available. The simple rules are the following.

1. To multiply two numbers, put them both in standard scientific notation.
Then multiply the two lefthand factors by ordinary multiplication, and
multiply the two righthand factors (powers of 10) by the multiplication
law for exponents — that is, by adding their exponents.

PROBLEM:
Multiply 3000 by 400,000.

SOLUTION:
Write each number in standard scientific notation. This gives
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3000 = 3 x 10%
400,000 = 4 x 10°
Multiply:
3x4=12

103 x 10° = 10%*> = 10®

The answer 1s 12 x 108 (or 1.2 x 109).

If some of the exponents are negative, there is no difference in the procedure;
the algebraic sum of the exponents still is the exponent of the answer.

PROBLEM:
Multiply 3000 by 0.00004.
SOLUTION:
3000 = 3 x 10°
0.00004 = 4 x 10°3
Multiply:

3x4=12
103 x 107% = 1033 = [0~?

The answer 1s 12 x 1072 (or 0.12).

2. To divide one number by another, put them both in standard scientific
notation. Divide the first lefthand factor by the second, according to
the rules of ordinary division. Divide the first righthand factor by the
second, according to the division law for exponents—that is, by sub-
tracting the exponent of the divisor from the exponent of the dividend
to obtain the exponent of the quotient.

PROBLEM:
Divide 0.0008 by 0.016

SOLUTION:
Write each number 1n standard scientific notation This gives

0.0008 = 8 x 107¢
0.016 = 1.6 x 107*
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Divide:
8
1.6 3
10_4: 10~4¢2 = |0-42 = |02
107#

The answer is 5 x 10-2 (or 0.05).

3. Toadd or subtract numbersin scientific notation, adjust the numbersto
make dl the exponents on the righthand factors the same. Then add or
subtract the lefthand factors by the ordinary rules, making no further
change in the righthand factors.

PROBLEM:
Add 2 x 10%to 3 x 102

SOLUTION:

Change one of the numbers to give its exponent the same value as the exponent of
the other; then add the lefthand factors.

2 X 108 = 20 x 102
3x 102= 3 x 102
23 x 102

The answer is 23 x 102 (or 2.3 x 10%).

4. Because 10° = 1 (more generally, n® = 1, for any number »n), if the
exponents in a problem reduce to zero, then the righthand factor drops
out of the solution.

PROBLEM:
Multiply 0.003 by 3000.
SOLUTION:
0.003 = 3 x 1078
3000 = 3 x 10°
Multiply

3X 103X 3 X 103=9x 1033 =9x 10°=9%x 1=9
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The use of these rules in problems requiring both multiplication and division
is illustrated in the following example.

PROBLEM:
Use exponents to solve

2,000,000 x 0.00004 x 500

9
0.008 x 20 ’

SOLUTION:
First, rewrite adl numbers in standard scientific notation:

2,000,000 = 2 x 10¢
0.00004 = 4 x 10-3

500 = 5 x 102
0.008 = 8 x 10°®
20=2x 10

This gives

2X 108X 4X 1073Xx 5x 10?2
8 x 107 x 2 x 10t

Dealing first with the lefthand factors, we find

2Xx4x5 5__,,5
8 x 2 2~

It

The exponent of the answer is

106y 105 % 102 _ 10832 10°
10-3 x 10! 1073+t 1072

— 103~ — 1032 — (0%

The complete answer is 2.5 x 105, or 250,000.

Approximate Calculations

Trained scientists often make mental estimates of numerical answers to quite
complicated calculations, with an ease that appears to border on the miracul-
ous. Actually, al they do is round off numbers and use exponents to reduce the
calculation to a very simple form. It is quite useful for you to learn these
methods. By using them, you can save a great deal of time in homework
problems and on tests, and can tell whether an answer seems reasonable (i.e.,
whether you've made a math error).
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PROBLEM:

We are told that the population of a city is 256,700 and that the assessed value of
the property is $653,891,600. Find an approximate value of the assessed property
per capita.

SOLUTION:

We need to evaluate the division

$653,891,600
256,700 ~ '

First we write the numbers in standard scientific notation:

6.538916 x 10®
2.56700 x 10°

Round off to
6.5 x 10®
26 x 10°
Mental arithmetic gives
6.5
76° 2.5
108
— = 3
05 10

The approximate answer is $2.5 x 10?, or $2500. This happens to be a very close
estimate; the value obtained with a calculator is $2547.30.

PROBLEM:
Find an approximate value for

2783 x 0.00894 x 0.00532
1238 x 6342 x 9.57

SOLUTION:
First rewrite in scientific notation but, instead of using standard form, set the
decimal points to make each lefthand factor as near to 1 as possible:

2.783 x 103 x 0894 x 10~2x 532 x 1073
1.238 x 10% x 6.342 x 103 x 0.957 x 10!

Rewrite the lefthand factors rounding off to integers:

3x103x 1 x10°2x5x 1073
1 x103x 6x108x 1x 10

Multiplication now gives
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3x1x5x 102 15

- - - - -9 — -9 H
Ix6x1x10" 8% 10 2.5 x 10~% (approximate)

After considerable practice, you will find that you can carry out such approxi-
mate calculations in your head. One useful way to get that practice is to make a
regular habit of first estimating an approximate answer, and then checking
your final exact answer against it to be sure that you are "in the right ball-
park.”

LOGARITHMS

A third way to represent a number is a condensed notation called alogarithm.
The common logarithm of anumber N (abbreviated log N ) is the power to which
10 (called the base) must be raised to give N. The logarithm therefore is an
exponent.

When a number (N)is an integral power of 10, its logarithm is a simple
integer, positive if N is greater than 1, and negative if N is less than 1. For
example

N= 1 =10° log 10° =0
N= 10 = 10 log 100 =1
N= 1000 = 10® log 108 = 3
N = 0.0001 = 10~* log 10~ = -4

When a number is not an integral power of 10, the logarithm is not a simple
integer, and assistance is needed to find it. The most common forms of assis-
tance are electronic hand calculators and log tables. With calculators, you
simply enter into the keyboard the number (N) whose log you want, press the
log key (or keys), and observe the log in the lighted display. For practice, and to
make sure that you know how to useyour calculator for this purpose, check that

for N = 807,267,434.51 = 10890702, log N = 8.90702
for N = 3,500,000 = Q854407 log N = 6.54407
for N = 0.00055 = 1Q~3.25964 log N = -3.25964
for N = 0.0000000000000000248 = 10—16-60355, log N = —16.60555

Remember that very large and very small numbers must be entered in scientific
notation. In addition, if you have a TI-type calculator, you may need to know
that you must pressthe INV and EE keysafter entering the number in scientific
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notation and before pressing the log key if you wish to obtain the log to more
than four decimal places.

Because logarithms are exponents, we have the following logarithm laws that
are derived from the laws of exponents given on page 8. Let A and B be any
two numbers.

Log of a product: logAB =1logA + log B
Log of a quotient: log % = logA - logB

Log of a power (n): logA™® =n logA

Log of the n'" root: log vA = log A'* = :’ log A

The logarithm of a number consists of two parts, called the characteristic and
the mantissa. The characteristic is the portion of the log that lies before the
decimal point, and the mantissa is the portion that lies after the decimal point.
The significance of separating a logarithm into these two parts is evident when
you apply the logarithm laws to the logs of numbers such as 2000, and 2, and
0.000002.

log 2000 = log (2 x 10%) = log 2 + log 10° = 0.30103 + 3 = 3.30103
log2 = log (2 x 107 = log 2 + log 10° = 0.30103 + O = 0.30103
log 0.000002 = log (2 x 107%) = log 2 + log 10-° = 0.30103 - 6 = -5.69897

Note that the characteristic is determined by the power to which 10 is raised
(when the number is in standard scientific notation), and the mantissais deter-
mined by the log of the lefthand factor (when the number is in scientific nota-
tion). Itisthese properties that make it so easy to find the logarithm of a number
using alog table. Here is how you can do it.

1. Write the number (N)in standard scientific notation.

2. Look up the mantissain the log table. It isthe log of the lefthand factor
in scientific notation, which is a number between 1 and 10. The man-
tissa will lie between 0 and 1.

3. The exponent of 10 (the righthand factor) is the characteristic of the log.
4. Add the mantissa and the characteristic to obtain log V.

PROBLEM:
Find the log of 203.
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SOLUTION:
1. Write the number as 2.03 x 102

2. Inthelog table, find 2.0 (sometimes written as 20) in the lefthand column.
Read across to the column under 3. This gives log 2.03 = 0.3075.

3. Because the exponent of 10 is 2, the characteristic is 2.
4. Log 203 = log 2.03 + log 102 = 0.3075 + 2 = 2.3075.

PROBLEM:
Find the log of 0.000203.

SOLUTION:
1. Write the number as 2.03 x 10~4.
2. Asin the previous problem, find log 2.03 = 0.3075 (from the log table).
3. Because the exponent of 10 is -4, the characteristic is -4.
4. Log 0.000203 = log 2.03 + log 10~ = 0.3075 - 4 = -3.6925.

Interpolation
The log tables of this book show only three digits for N. If you want the log of a
four-digit number, you must estimate the mantissa from the two closest values
in the table. This process is called interpolation. For example, to find the log of
2032, you would proceed as follows.
Log 2032 = log (2.032 x 109
Mantissa of 2.04 = 0.3096
Mantissa of 2.03 = 0.3075
Difference between mantissas = 0.0021
The mantissa of 2.032 will be about 0.2 of the way between the mantissas of
2.03 and 2.04; therefore,
Mantissa of 2.032 = 0.3075 + (0.2 x 0.0021) = 0.3075 + 0.0004 = 0.3079
Log 2032 = log 2.032 + log 10% = 3.3079
Most hand calculators will provide logs for nine-digit numbers (a number

between 1 and 10 to eight decimal places), giving them to eight decimal places.
It would require a huge book of log tables to give (with much effort) the equiva-
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lent information. Although you will normally use your calculator to deal with
logs, you should be able to handle log problems with simple log tables when
your calculator 1s broken down or not available.

ANTILOGARITHMS

The number that corresponds to a given logarithm 1s known as the an-

tilogarithm, or antilog. Like logs, the antilogs are more easily obtained from a

calculator than from alog table, but you should be able to use both methods.
With a calculator you would find the antilog as follows.

1. Enter the given log through the keyboard. Use the "change sign’’ key
after entry if the log 1s negative, don't use the — key (1 e , the subtract
key).

2. Press the antilog key (or keys). On an HP-type calculator a common

key symbol 1s 10*; on a TI-type calculator you would usually press the
INV and LOG keys, n that order.

3. The antilog appears in the lighted display.

Check your ability to find antilogs with your calculator, knowing that antilog
0.77815 = 6.00000, antilog 5.39756 = 2.49781 x 103, and antilog (-3.84615) =
142512 x 107+,

With a log table you would find the antilog as illustrated by the following
problems.

PROBLEM:
Find the antilog of 4 5502

SOLUTION:

We want the number that corresponds to 10%3%% = 10°5%02 x 10* Locate the
mantissa, which 1s 0 5502, 1n a log table, then find the value of N that has this log
The mantissa0 5502 lies in the row corresponding to 3 5 and in the column headed
by 5 Therefore the number corresponding to 10° 532 1s 3 55, and the number we
seek 18 355 x 10¢

PROBLEM:
Find the antilog of -6 7345

SOLUTION:

We want the number that corresponds to 10787345 = 1002655 x 10~7 Note that we
must have a positive exponent for the lefthand factor, the sum of the two expo-
nents 1s still -6 7345 Locate the mantissa, which 1s 0 2655, 1n the log table, then
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find the value of V that has this log. The mantissa 0.2655 lies i1n the row corre-
sponding to 1.8, between the columns headed 4 and 5. In fact 0.2655 is 7/24, or
approximately 0.3, of the way between 0.2648 and 0.2672. Therefore the number
corresponding to 10°20% is 1,843, and the number we seek is 1.843 x 1077

NATURAL LOGARITHMS

Numbers other than 10 could be used as the base for logarithms, but the only
other base that is commonly used is ¢, an inexact number (like 7) that has
mathematical significance. Many laws of chemistry and physics are derived
mathematically from physical models and principles and, as a result, involve
logarithms with the base ¢. These logarithms are called natural logs. The nat-
ural log of a number N is abbreviated In N. The value of e is 2.71828183. . . .
Y ou can always convert common logs to natural logs (or vice versa) if you know
the conversion factor of 2.30258509 . . . (usually rounded to 2.303) and em-
ploy it in one of the following ways:

v =InN = 2303 log N

(¥ = ]Qx/2303

Some calculators can provide natural logs directly, without any need to convert
explicitly from one form to the other. If your calculator has this capability, you
would simply enter through the keyboard the number whose natural log you
desire, then press the natural log key (or keys), whose symbol is probably LN.
On your own calculator you can check that In 4762 = 8.46842, and that
In 0.0000765 = -9.47822.

Most calculators have a means of providing the antilns of natural logs, as
follows.

1. Enter the given log through the keyboard. Use the *‘change sign” key
after entry if the log is negative; don't use the — key (i.e., the subtract

key).
2. Press the antiln key (or keys). On an HP-type calculator, a common

key symbol is ¢ *; on a TI-type calculator you would usually press the
INV and LN keys, in that order.

3. The antiln appears in the lighted display.

Using your own calculator, make sure that you can find the following antilns:
antiln 1.09861 = 3.00000; antiln 13.47619 = 7.12254 x 10° and antiln
(-7.60354) = 4.98683 x 1074
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SOME OTHER BASIC MATH OPERATIONS

There are some additional math operations that you should be able to handle
easily, either with calculators or with log tables. Three of these are discussed
here.

Reciprocals

The quotient that results when any number is divided into one is said to be the
reciprocal of that number. It is a common value that can be found on any
calculator by making the required division, but aimost every calculator has a
"reciprocal" key (usually labeled \IX) that makes it even easier. All you do is
enter through the keyboard the number whose reciprocal you want; then press
the \Ix key, and the reciprocal appears in the lighted display. You should learn
to take advantage of this key; it is very useful. With your own calculator verify
that 1/83.6 = 0.01196; 1/0.00000297 = 3.367 x 103 and 1/6.059 x 107= 1.650 x
1078,

Powers

We have discussed at length the usefulness of powers of 10 as part of scientific

notation, but many practical problems involve the powers of other numbers.

For example, the area of a circle involves the square of the radius, and the

volume of a sphere involves the cube of the radius. Nearly every calculator

yields the square of a number when you simply enter the number through the

keyboard and then press the x? key; the square appears in the lighted display.
For powers other than 2 you will need to use the y* key, as follows.

1. Enter through the keyboard the number you wish to raise to some
power.

2. a Press the ENTER key (on an HP-type calculator).
b. Press the v+ key (on a TI-type calculator).

3. Enter through the keyboard the power to which you wish to raise the
number, butignore the minus sign if the exponent is a negative number.
The number need not be an integer, and it may be less than one as well
as larger than one.

4. |If the power is negative, press the "change sign" key (common key
symbols are CHS and +/-): don't press the — key.

5. a Press the y* key (on an HP-type calculator).
b. Press the = key (on a Tl-type calculator).

6. The answer will be found in the lighted display.
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Ascertain with your calculator that (7.452)? = 55.53230; (3.71 x 107%)% = 2.6076
X 10727; (0.000429)*%° = 8138 x 107'3; (6.405)~° = 3.086 x 1073. Onlypositive
numbers normally can be raised to a power with the y* key. If you try raising a
negative number to a power, you will get an error message in the display.

Tofind the power of anumber by means of alog table, you use the logarithm
laws cited on page 14, as illustrated in the following problem.

PROBLEM:
Find the value of (2530)>.

SOLUTION:

Use the logarithm law for powers (log A" = n logA) to find the log of (2530)%; then
take the antilog to find the desired value

log 2530 = log (2.53 x 10% = log 2.53 + log 103
= 04031 + 3 = 3.4031
5 log 2530 = (5)(3.4031) = 17.0155
(2530)> = antilog 17.0155 = 1.036 x 10'7

Roots

Theroot of a number is the result of raising that number to a power of less than
one. For simple cases we speak of the square root, cube root, fourth root, and
so on of a number (N), corresponding to N, N4, N, and so on. In the general
case, the nth root of a number TV is simply N'», where n may be any number
greater than one and is not limited to being an integer. Another common rep-
resentation for these same roots is VN, VN, rfN. Any calculator will give the
square root directly. You just enter through the keyboard the number whose
square root you want, then press the Vixkey, and the square root appears in the
lighted display.

For al other roots, it is simplest to use your calculator as follows, realizing
that the y* key canjust as well be used for y!™ where x = 1/n.

1. Enter through the keyboard the number whose root you wish to take.

2. a Press the ENTER key (on an HP-type calculator).
b. Press they* key (on a TI-type calculator).

3. Enter through the keyboard the number (n) that corresponds to the
root you wish to take. This need not be an integer.

4. Press the reciprocal (1/x)key.
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5. a Press they® key (on an HP-type calculator).
b. Press the = key (on a TI-type calculator).

6. The desired root will be found in the lighted display.

You should use your calculator to verify that (726)t = 26.944; (8.73 X 10-%)t =
4.436 x 107% (0.000000416)t = 5.294 x 1072, (6.591 x 10%)# = 23.054.

To find the root of a number by means of alog table, you use the logarithm
laws cited on page 14, as illustrated in the following problem.

PROBLEM:
Find the value of (2530)t = V/2530.

SOLUTION:
Usethe logarithm law for roots (log AY* = 1/nlogA) tofindthelog of (2530)t. Then
take the antilog to find the desired value.

log 2530 = log 2.53 + log 10%® = 04031 + 3 = 34031

_3.4031
T s

(2530)t = antilog 0.6806 = 4.7931

= 0.6806

(%) log 2530

Sequential Operations

Throughout this chapter, we have talked as though every number we wish to
use with a calculator must be entered through the keyboard. Frequently, how-
ever, we wish to use the result of ajust-performed calculation (till visible in the
lighted display) as part of the next calculation step. Your calculator is able to
handle a continuous series of calculations—including logs, powers, roots, and
reciprocals as well as the basic operations of multiplication, division, addition,
and subtraction. Each make of calculator differs somewhat in the procedure for
sequential calculations, but it is extremely important that you learn to do them
easily and efficiently. You should never have to copy down intermediate results
and then reenter them later through the keyboard in order to complete the
entire calculation. One way to minimize wasteful effort is to write down all
of the operations in a single equation before starting to do any of the calcu-
lations. We shdll not always do this in the illustrative problems of this book,
because stepwise explanation of problems often is more important for our pur-
poses than is the time saved by a maximally efficient mode of calculation. With
practice, you will learn the best balance of these factors for you in solving
problems.
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EPILOGUE

For many studentsjust starting in chemistry, there is unnecessary frustration
and wasted time because of erroneous or inefficient use of new hand cal-
culators. Learning chemistry is hard enough; lack of skill in using a relatively
simple basic tool only compounds the difficulties. One of the main purposes of
the following problems is to give you practice in correctly and efficiently doing
the principal types of calculations you will deal with in general chemistry. Two
other major types of numerical problems, dealing with reliability of measure-
ments and graphing of data, are discussed in Chapters 5 and 6.

In each of the groups of problems given here you should be able to get the
correct answersrapidly (without making abig intellectual production out of it)
and efficiently (without performing a lot of unnecessary operations or writing
down intermediate figures). Rapidity comes with practice, but correctness and
efficiency may require reading your cal culator's instruction manual, or consult-
ing a friend with a calculator similar to yours. Making sure that you can do
these things at the outset definitely will repay you in time saved later and in the
quality of your performance in the course.

PROBLEMS A

1. Simple operations.
(8 37.237 + 170.04 + 6.404 + 0.395 =
(b) 406,732,465 - 9,357,530,622 =
(c) 76.42 - 37.91 - 5385 + 2856 - 94.09 + 22.34 + 6.06 - 40.77 =
(d) 372.375 x 5,287,695.088 =
(e) 0.00000743275 - 4,467,325.62 =
® 465.1 x 372.7 X 63.2 x 10047
518.75 x 892.4 h
(0.000473)(~72.85) - (21.63)(—0.000625) _
9 (872.3X-0.0345) - (643.62)(—0.759)
hy 27+ 62) + (32 = STJ(74 - 49) - (18 + 66)] _
(376 + 422) - (857 - 62)]

2. Reciprocals (use reciprocal key).
(a)

1 1
8732 D 4003 x 100"
1 1
) 0.0000362 = © 6023 x 109~
(©) 1/4.267,625 =

3. Scientific notation and decimals (integral powers and roots of base 10).
A. Express each of the following in standard scientific notation, and also give
the answer in that notation.



Number Notations, Arithmetical Operations, and Calculators

(a) 0.000053 x 0.00000000000087 =

(b) 534,000,000,000,000 x 8,700,000 =

(c) 5,340,000,000,000,000 ~ 0.000000000000087 =
B. Perform the following computations.

@ 2.783 x 10®x 0.894 x 1072 x 532 x 1073 _

1.238 x 10% x 6.342 x 102 x 0.957 x 10°¢

8.52 x 1073 x 7.394 x 10*x 23.16 x 0.046 _
© 1637 x 103 x 45 x 10°x 125 x 0.8954
(f) 534 x 103+ 87 x 1077- 9.4 x 10°¢=

4. Powers and roots (general exponents for any base).

(@ (5280)2 =

(b) V5280 =

(c) (0.00000000000528)2 =

(d) (0.000000000528)* =

(e) (1776)% =

(f) 1977 =

() V4.7 x 101 =

(h) (7.43 x 103 =

(i) (6.57 x 10-9)-t=

. 1

0 (5.5 x 10~y
X 37121 x 503 x (210)* _

47.6 x 0.00326
(1) (6.72)%37.6)t =
(m) 0.093 x (76)° x 4.96 _
(52)* x V0.0038

/5.73 X 107* x 3.8 x 10" x 0.0067 X 542 x 10%¢_
\ 1987 x 0.082 x 1.38 x 10'¢ -
(o) (3.78)* x 5.8 x 1072

6.6 x 10727 x (4.2)*
g 8035 x 10~* x 0.000579 x 4545 _
e (3.5 x (4.2 x 10732 -
(45.)7%3.21)°
’.1)7%5.07)

(n)

@

5. Logarithms and antilogarithms
A. Determine the logarithms of the following numbers.

(a) log 47.4 = (h) In 3.82 =

(b) log 367 = (i) In 5385 =

(c) log 0.0052 = (i) In 0.000706 =

(d) log (8.73 x 1077 = (k) In (4.64 x 1079 =
(e) log 1572 = (1) In 239 =

(f) log (3.627 x 10%) = (m) In (6.375 x 10%7) =

(9) log (-365) = (n) In (-4.37) =
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B Determine the antilogarithms of the following numbers
(0) antilog 7 74518 = (u) antiln 3 87624 -
(p) antilog 0 30103 = (v) antiln 0 69315 =
(q) antilog (-6 36315) (w) antiln (2 04961) =
(r) antilog (-8 01106} (x) antiln (-96 35760) =

(s) antilog (1 64782) = (y) antiln 0 00674 =

(t) antilog (-4 49807) = (2) antiln (-2 30259) =
C Express the following numbers in standard scientific notation

(aa) 107 74518 (ee) 102 00724

(bb) 10030103 (ff) 10-4 49807

(cc) 106 sests (gg) 100 ooooeas

(dd) 10~8 01106

6 "Solving for X  Solve for whatever variable 1s used (X V R etc)
A Simple manipulations

7 4
®x=3

31 x 12 3
® =0y 3
(c)%=24

(d) %(F _3)-45

3
(e)‘%ﬂzo
(H5Pt-2=6
(9) (0 4)(550)(T, - 20) + (35)(T, - 20) = (O 1)(120)(100 - T)
(h) 4X + 5:4—3X
32 12
B Problems involving logarithms Solve for whatever variable 1s used
(1) log X = 6 34797

0) log (%) = —172222

®) Iog(Ql):ZS?)OSS

A3
(1) log (TJ = 147654

(m) log P = _24(1)3 374 0183837 (FindPfor T = 328)
(n) AG = —(2 303)(1 987)(Dlog K (Find AG for T = 298
andK = 465 x 10 3
C Solving the quadratic equation For the equation ax? + bx + ¢ = 0, the
solution 1s

_ —=b = Vb® - 4ac
2a
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Solve for the unknown variable 1n the following problems
(0) (M - 5)2=49

(p) X+ 5=4x2+ 3

(@ (x+2)2-3x+6

(N 2x2+3x=5

(s) 3n2-7n=6

(t) (m-3)?=5-2m

W (y+42-3=22

(V) 235x2+ 434x - 2965 =0

(W) 475X 107%2-206x 100%x +917x 102*-0

D The repetitive use of stored constants (These problems are ideally suited

DH20 :

to a programmable calculator where, with a suitable program aong with

stored constants, one simply keysn the values of the independent variable

and reads out the values of the calculated dependent variable If your

calculator 1s programmable, these would be good simple practice prob-

lems for programming )

(x) Make atable of the factors needed to convert gas pressures expressed
m R, ' mm of mercury" at ¢°C to pressures expressed m R, torr’ for
each degree Celsius in the range 20°C to 30°C Use the formula

R, = R(1 - 630 x 107%)

(y) Make atable of the vapor pressures of water (P n torr) at each 5°C
interval in the range 0°C to 50°C, using the following formula
T (Kelvin) = 273 + ¢°C
LogP = — w + 9 0961
(z2) Make atable of the densities of water for each degree Celsius in the
range 0°C to 15°C, using the formula

099983960 + 1 8224944 x 1072 - 7 92221 x 107%% - 5 544846 x 10~%>
1+ 18159725 x 10~%

PROBLEMS B

7

Simple operations

(8 1564 + 0925 + 47506 + 2 197 =
(b) 732,379,454 22 - 1,625,486,915 64 =

(c) 18735+ 270 16-8998- 4282 + 3934 + 30009 — 165322 =

(d) 536 297 x 8,477,062 35 =

(©) 6,323,576 819 X 0 0000000844611 -
4753 x 7304 x 2738
O ——7s00x2082
(-0 COTA(46 46) - (395 7)(-0 0001156)
(O (20 6) (00435 - (-62 41300 780)
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[(18 — 46) + (93 — 62)][(60 — 27) — (43 + 19)]
(276 + 321) (761 - 93)] B

8 Reciprocals (use reciprocal key)

(h)

1 1
@ 3363~ @ 3033 % 105~
1 1
® sz~ © 7mex 10 -
I
©)

0 000000007916 _

9 Scientific notation and decimals (integral powers and roots of base 10)
A Express each of the following in standard scientific notation, and aso give
the answer 1n that notation
(a) 0000000473 x 0 00000926 =
(b) 85,900,000,000,000,000 x 27,300,000 000 =
(c) 0 000000000000000643 - 90 600,000,000,000,000,000 =
B Perform the following computations
4691 x 10°x 8035 x 10 "X 73 X 10°®
(@ 509 x 10%x 107 x 10°x 0539 x 10 _
7307 x 106 x 432 1 x 675 x 10° x 00572
(® 365 x 263 x 10°x 00062x 515 x 105
H475x 103+ 806 x 102-552x 10 997 x 10 °=

10 Powers and roots (general exponents for any base)

(a) (3651’ -

(b) V365 1=

(©) (0 0000000000000365)2-

(& (0 0000000000003651)t =

(e) (1978)% -

(f) 2001)¢ -

() V34x 10"-

(h) 825 x 107t =

(0 (462 x 1078*=

1
0 @o7x 10
o 0000537 x (62 4° x 2134 _
k) 319x 105x 827 B
Q) (3 654165 2) =
(my (18 7)%48 9)%(0 000326) _
VA6 5 x (3 17)?
/403 x 1075 x 0000737 X 6 02 X 10'4Xx 53 7\t _
\ 307 x 10x 00329 x 21 63 i
(718X 10792 x 426 X 107
555 x 10%x (376)°
647 x 107 x 39 8 x 00000427
P —Gmxi09x 230
(26 5)43 77)*
D 82561

(
(
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11 Logarithms and antilogarithms
A Determine the logarithms of the following numbers

(@) log 63 2 = (h) In 16 05 =
(b) log 906 = (1) In 1536 =
(c) log 0 0000451 = 0) In 0 000219 =
(d) log (732 x 1079 = (K) In (577 x 1079 =
(e) log 43,620 = () In 170,300 =
(f) log (6 344 x 10*}) = (m) In (4 696 x 10") =
(9) log (-27 6) = (n) In(-133) -

B Determine the antilogarithms of the following numbers
(0) antilog 4 37891 = (u) antiln 2 19722 =
(p) antilog 0 90309 = (v) antiln 0 12345 =

(W) antiln (-27 27546) =

)
(q) antilog (-5 65432)
) (x) antiln (— 1 98765) =

(r) antilog (-9 00576)

(s) antilog (2 55555) = (y) antiln (0 00026) =

(t) antilog (-0 17562) = (2) antiln (-7 77777) =
C Express the following numbers in standard scientific notation

(aa) 104 37891 (ee) 103 00225

(bb) 10090309 (ﬁ‘) 10049713

(cc) 10203432 (gg) 10-0 vocer77

(dd) 10—9 00576

12 "Solving for X ™ Solve for whatever variable 1s used (X 'Y Q etc)
A Simple manipulations
83 12
@35=%
14 9 x 27
®T="37

d) : (F - 32) = 70

3
(e) 7% = 235
(f) 15 =4+ 7v#
(@ (0 17)(110)(100 - T,) = (0 53)(480) T, - 22) + (40T, - 22)
o Sx_ 45— 4x
4_—_ —-—
(hj 19 = 3
B Problems involving logarithms Solve for whatever variable 1s used
(1) log Y = 4 83651

0) log (Ii{) - 5 17624
1

() log 73 = -5 63257

() log (A%) = 2 19607

m) logP = =342 19, 5020784 (FundP for T = 208
1
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(n) AG = —(2.303)(1.987X(T) log K (Find AG for T = 333
and K = 6.39 x 107%)
C. Solving the quadratic equation. For the equation: ax? + bx + ¢ = 0, the
solution is
_ —b =+ Vbi4dac
2a

X

Solve for the unknown variable in each of the following problems.
(0 (y+ 7 =64

(p) 5x2-8=6x-1

@ z-32=5-11

() 4g% + 50 = 3
(s) 7p2-3p =6
(t) (2N + 42 =7 - 4N

(u) (0.4V - 0.3)2 = 0.16 - 0.24V

(v) 8.59x2- 29.34x + 1825 =0

(W) 6.47 x 10~%2- 409 X 10~% + 2.18 x 102= 0
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Use of Dimensions

When numbers are used to express results of measurements, the units of mea-
surement should always be given. Too frequently these units, or dimensions,
are assumed but not shown.

In using dimensions in calculations, we follow a few simple rules.

1. Every number that represents a measurement is given with its
dimension—for example, 12 men, 16 feet, 5 miles.

2. Numbers that do not involve a measurement are written without a
dimension. Examples are = (the ratio of the circumference of acircle to
its diameter) and logarithms.

3. In addition and subtraction, al numbers must have the same dimen-
sions. We can add 2 apples to 3 apples, but we cannot add 2 apples to 3
miles.

4. In multiplication and division, the dimensions of the numbers are mul-
tiplied and dividedjust as the numbers are, and the product or quotient
of the dimension appears in thefinal result. Thus the product (6 men)(2
days) = 12 man-days, and the product (5 gat)(4 Ibs/gat) = 20 lbs. Note
that units common to both numerator and denominator cancel each
other, just as do factors common to both.

A term frequently used with numbers is per, which shows how many units of
one measurement correspond to one unit of another. A common method of
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calculation is to divide the total number of units of one property by the total
number of units of another property to which it corresponds. Thus, if we are
told that 4.2 galons weigh 10.5 pounds, we express the relation by the ratio

1051b _, ¢ Ib
4.2 gd " ga

which is read as "2.5 pounds per gallon.”” A few examples will help in under-
standing the use of units.

PROBLEM:
If apples cost 30 cents per dozen, how many can be bought for 50 cents?

SOLUTION:
Set up an equation that will eliminate "cents' and give "apples' in its place, as
follows.

/50 cents\ /
(@ number of apples = ' o appleS>

(oo der

_ 20 x 12 apples

3V

or (b) number of apples = (50 cents) (

= 20 apples

| dez ) (2 apples)
30 cents, dez
_ 50 x 1x 12 apples

by

=20apples

In (a) we divided 50 cents by 30 cents/doz, whilein (b) we multiplied 50 centsby 1
doz/30 cents, the reciprocal of 30 cents/doz. These are equivalent operations and
you should feel comfortable with either method. In each case, "cents' and “*doz”
cancel out, leaving only "apples,” as we had hoped.

A somewhat more sophisticated method for setting up the problem is to use
the negative exponent, - 1, for units that appear in the denominator of a set of
units. Thus the term "per dozen" may be written as doz™!. The preceding
problem could have been set up in the following form:

&N ra

_ KsulRY -
number of apples = I\ mm-doﬂ'}” apples dez— = 20 apples

PROBLEM:
Find the number of feet in 1.5 mi (one mile is 5280 ft).
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SOLUTION:
To find the number of feet, we need the product shown in the equation
feet = 15 mr x 5280 —
mr
= 7920 ft

Alternatively, we may use the solution

feet = 1 5mr x 5280 ft pn—!
= 7920 ft

PROBLEM:
Find the number of gallons in 5 cu yd (also written as yd?¥, using the conversion
factors

231 n% =1 gd
3ft=1yd
121n=1ft
SOLUTION:
O\ m\® 1gd
= 3 — T
galons = 5 yd?® x (% 'yd\/ X (\12 ft) * 231 m?
~ ﬁ }f gal
= ST 2T X T8 S B
= 1010 ga
PROBLEM:

Find a conversion factor F by which you can convert yd? to gallons

SOLUTION:
A conversion factor can be developed from other known factors by calculating a
value of F that will satisfy the equation

ga = (yd)’[F]

F must have such units that, when they are substituted in this equation, they will
cancel yd* and yield only ga as the net result, as follows

o - 00 [(22)"(122)" (55259

gal
F =202 yd®
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Thus, if you want to convert 20 yd* to gallons, you merely multiply 20 by 202, as
follows:

gal = (20 ) (202 ;%) = 4040 gl

* -

PROBLEM:
If arunner does the 100 yd dash in 10 seconds, what is his speed in miles per hour?

SOLUTION:

The first thing you should observe is that the units of the desired answer must be
mi/hr, so the origina information must be used in the ratio of length/time, or as 100
yd/10 sec. Once you have made the proper decision about how to use the units of
the origina data, follow the same procedure as in finding a conversion factor F:

rm (100 ye\ / 1 mi \ (60sec) /60 mim\ _ rm
hr = \ 10 see/ \1760 ya/ \ mm / \ hr / " ohr

PROBLEMS A

—

. Compute the number of seconds in the month of July.

N

Develop afactor to convert days to seconds.

w

. A satellite is orbiting at a speed of 18,000 miles per hour. How many seconds
does it take to travel 100 miles”?

4. A traveler on ajet plane notes that in 30 seconds the plane passes 6 section-
line roads (1 mile apart). What is the ground speed, in miles per hour?

5. A cubic foot of water weighs 62.4 1b. What is the weight of a gallon of water
(231 cu in)?

6. For each of the following pairs of units, work out a conversion factor F that
will convert a measurement given in one unit to a measurement given in the
other, and show the simple steps used in your work.

(8 ounces to tons

(b) cubic inches to cubic yards

(c) feet per second to miles per hour

(d) tons per square yard to pounds per square inch
(e) cents per pound to dollars per ton

(f) seconds to weeks

(g) cubic feet per second to quarts per minute

(h) miles to fathoms (1 fathom = 6 ft)

(i) yards to mils (1 mil = 1/1000 in)
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PROBLEMS B

7.

10.

11.

12.

For each of the following pairs of units, follow the same procedure as that for
Problem 6.

(a) cubic feet to gallons

(b) ounces per sguare foot to pounds per square yards

(c) galons per second to cubic yards per minute

(d) tons per cubic foot to pounds per cubic inch

(e) yards per second to inches per hour

(f) dollars per pound to nickels per ounce

(g) milesto mils (1 mil = 1/1000in)

(h) knots to miles per hour (1 knot = 101.5 feet per minute)
(i) degrees of arc per second to revolutions per minute

An acre-foot of water will cover an acre of land with alayer of water one foot
deep. How many gallons are in an acre-foot? Use the following factors: 1 acre
= 4840 yd?; and 1 gal = 231 in®.

Municipal water is sold at 21 cents per 100 cu ft. What is the price per
acre-foot?

In the Bohr model of the hydrogen atom, an electron travelsin acircular orbit
about the nucleus at approximately 5 x 10* miles per hour. How many revo-
[utions per second does the electron make if the radius of the orbit is 2 x 10-*
inches?

A light-year is the distance that light travels in one year at a velocity of
186,000 miles per second. How many miles is it to the galaxy in Andromeda,
which is said to be 650,000 light-years away?

A parsec is a unit of measure for interstellar space; it is equal to 3.26 light-
years. How many miles are in one parsec?
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Units of Scientific Measurements

PREFIXES

Scientific measurements range from fantastically large to incredibly small hum-
bers, and units that are appropriate for one measurement may be entirely inap-
propriate for another. To avoid the creation of many different sets of units, it is
common practice to vary the size of afundamental unit by attaching a suitable
prefix to it. Table 4-1 shows common metric prefixes and the multiples they
indicate for any given unit of measurement. Thus a kilometer is 1000 meters, a
microgram is 108 gram, and a nanosecond is 10~? second.

SI UNITS

Except for temperature and time, nearly al scientific measurements are based
on the metric system. In recent years, there has been a concerted international
effort to persuade scientists to express dl metric measurements in terms of just
seven basic units, called Sl units (for Systeme International). In addition to the
seven basic Sl units, there are seventeen other common units derived from
them that have special names. However, despite the logical arguments that
have been put forth for undeviating adherence to Sl units, there has not been a
strong popular move in this direction. For one thing, each scientist must cope
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TABLE 4-1

Metric Prefixes

Prefix Factor Symbol Prefix Factor Symbol

exa 108 E centi 10 2 c

peta 10 P milh 103 m

tera 1012 T micro 10 ® "

giga 10° G nano 10-* n

mega 10¢ M pico 1012 p

kilo 103 k femto 10-15 f
atto 10— a

with the vast accumulated literature and the history of common usage. Fur-
thermore, two of the most common basic Sl units (kilogram for mass, and meter
for length) are inappropriately large for many scientific measurements. In this
book, we follow the common usage that appears in amost al chemistry
textbooks and the accumulated literature (such as handbooks). Even so, we do
use many of the basic or derived Sl units because common usage includes a
number of them, though not all. (A complete list of the basic and derived Sl
units, and their symbols, is given on the next to last page of this text.)

METRIC AND ENGLISH UNITS

Table 4-2 shows how some of the basic metric units are related to units com-
monly used in English-speaking countries for nonscientific measurements. Al-
though the United States, Great Britain, and Canada have officialy resolved to
convert to the metric system, it will be many years before the conversion is
complete. In the meantime, you must learn to convert from one system to the
other. The three conversion factors given in Table 4-2 (rounded off to 2.54

TABLE 4-2
Metric and English Units
Dimension Conversion
measured Metric unit English unit factor F
. cm
Length centimeter (cm) inch (in) 2540 o
. liter
Volume liter (t) quart (qt) 09463 _t
Mass gram (g) pound (Ib) 453 6 1-95
Temperature degree Ceisius(°C) degree Fahrenheit (°F) °C=](°F-32)

Time second (sec) second (sec)
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cm/in., 0.946 liter/qt, and 454 g/1b) should be memorized, for they will take care
of essentially all the interconversions you will have to make. In addition, you
should know the formulas for converting from Fahrenheit to Celsius tempera-
tures and vice versa. The customary units of days, hours, minutes, and seconds
are used in both systems for the measurement of time.

There is one metric unit with a special name that scientists frequently use
because it permits the use of simple numbers when talking about the sizes of
atoms and molecules. It is caled an angstrom (A); 1 A = 10-%cm.

CONVERSION OF UNITS

The following problems illustrate conversions of units. Note that in al such
computations it is important to include the dimensions of numbers, just as
stressed in Chapter 3, and that the use of these dimensions helps to avoid
errors.

PROBLEM:
Convert #inch to millimeters.

SOLUTION:

(l_ ml\(Z 54 m}\‘ (10 mm) 7.94 mm

PROBLEM:
A trip takes 3 hrs. Express this in picoseconds.

SOLUTION:

1
(3 hrs) (ﬁo min 60 fﬁ)(mfiic) = 108 X 10 psec

PROBLEM:
Find the number of cubic nanometers in a gallon (231 in?).

SOLUTION:

(1 gal) (231 ——ﬂz 540 m) \100 \} /\

1nm)

\3
) = 3.79 x 102*nm®

PROBLEM:
Express the velocity of 20 mi/hr in terms of cm/sec.
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SOLUTION:

O mi\ /,, t\N/ NS AN/ 1 hr )\ /1 min\
Velocity = \70 hr/ 528'Ofmll \1bnft/\ gﬂ1n/ \60 min/ \60 sec)

= 894 <=
Sec

PROBLEM:
Find the conversion factor F by which you would convert tbs/ft*to kg/m3.

SOLUTION:

kg Ibs
m® (fta) LF]
1bs lkg)(1lt \3/ Lln )3( C_m)"]
(fta) [(454 lb) 1000 g/ \12in 2.54cm 00 m
kg ft3
m? Ib

F= 1603 ——

TEMPERATURE

Three different scales are in common use for measurements of temperature:
the Celsius scale (expressed in degrees Celsius, or °C), the Fahrenheit scale
(expressed in degrees Fahrenheit, or °F), and the Kelvin scale (expressed in
kelvins, or K). The Fahrenheit scde is commonly used in daily life and in
engineering work. The Celsius scaleisused in scientific work and iscoming into
common usage in daily life in English-speaking countries. The Kelvin scale
(also called the absolute scale) is the Sl choice for temperature measurements,
and it is widely used in scientific work.

Table 4-3 compares the three scales. Each scale has a different zero point.
The size of the unit is the same for the Celsius and Kelvin scales, but it is

TABLE 4-3
The Three Temperature Scales
Scale
Reference point F C K
Boiling point of water 212° 100° 373.2
Freezing point of water 32° 0° 273.2

Difference (FP to BP) 180° 100° 100
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different for the Fahrenheit scale. Therange (temperature difference) from the
freezing point to the boiling point of water is 180°F or 100°C or 100 K. There-
fore, in measuring temperature changes or differences, 1°C = 1 K = 18°F, or
1°F = 100/180°C = 5/9°C = 5/9 K. Note that these formulas apply only to
temperature differences or changes. They do not take into account the differing
zero points of the three temperature scales. In order to convert atemperature
measurement from one scale to another, we must have formulas that allow for
both the differing unit sizes and the differing zero points.

The following is one logical approach that can be taken to derive a formula
for converting Fahrenheit measurements to Celsius measurements.

1. From the Fahrenheit scale create a new Imaginary temperature scale (call
it °I) that will give areading of 0°1 at freezing point of water (just like the Celsius
scale). This can be accomplished by simply subtracting 32 from al of the
readings on the Fahrenheit scale to give the conversion formula

°I=°F- 32

Note that the size of the units is the same on both scales.

2. The Imaginary scale and the Celsius scale both have the same zero point
(the freezing point of water), but they differ in the size of their units. The
readings on the Celsius scale will always bejust 100/180 = 5/9 of the readings
on the Imaginary scale, so the conversion formulafrom one to the other is

°C = 5/9°
3. If the readings on the Imaginary scale are now expressed in terms of the
readings on the Fahrenheit scale, we shall have the formula to convert from
Fahrenheit to Celsius given in Table 4-2. That is,
°C = 5/9C°F - 32
The units of the Kelvin scale are the same size as those of the Celsius scale,

but the zero point of the Kelvin scale is 273.2 units lower than that of the
Celsius scale. Therefore, K = °C + 273.2 = 5/9(°F - 32) + 273.2.

PROBLEM:
Convert 115°Fto equivalent Celsius and Kelvin temperatures.

SOLUTION:
Substituting 115 in the Fahrenheit-to-Celsius conversion formula, we have
5 5 x 83

C=§(F—32)= 5

= 46.1
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Using the Celsius-to-Kelvin formula, we have
K=°C+ 2732 = 461 + 2732 = 3193
Thus,
115°F = 46.1°C = 319.3 K

PROBLEM:
Convert 30°C to the Fahrenheit scale.

SOLUTION:
Rearrange the conversion formula to give °F on the left:
9 o, - O]
$C=F—%
9
°F = ’§°C + 32

Now we can substitute 30 for °C and solve for °F:

+ 32 = 86.0

op = 9% 30
5

Thus, 30°C = 86°F.

PROBLEMS A

When you work these problems, show the unitsin each step of the calcul ation, and
show the units of the answers.

1. A brassbaris2 x 3 x 6 cm. Find its area and volume.

2. A cylindrical rod is 2 cm in diameter and 12 inches long. Find its area and
volume.

3. First-class postage is A cents for each ounce or fraction thereof. How much
postageisrequired for aletter weighing 98 g? Give your answer in terms of A.

4. What is the weight, in pounds, of 20 kg of iron?
5. The distance from Paris to Rouen is 123 km. How many milesis this?

6. The regulation basketball may have a maximum circumference of 29% inches.
What is its diameter in centimeters?

7. The longest and shortest visible waves of the spectrum have wavel engths of
0.000067 cm and 0.000037 cm. Convert these values to (a) angstroms, and (b)
nanometers.
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8. The wavelengths of X rays characteristic of certain metallic targets are (a)
copper, 1537395 A; (b) chromium, 2.28503 A; (c) molybdenum, 0.70783 A:
(d) tungsten, 0.20862 A. Express these wavelengths in centimeters.

9. If the laboratory temperature is 21°C, what is the Fahrenheit temperature?

10. When the temperature gets to -50°F in Siberia, what would be the tempera-
ture on the Celsius and Kelvin scales?

11. Mercury freezes at —38.87°C. What are the freezing points on the Fahrenheit
and Kelvin scales?

12. What is the Fahrenheit temperature at absolute zero (0 K)?

13. At what temperature do the Fahrenheit and Celsius scales have the same
reading?

14. Light travels at a speed of 3.0 x 10'°cm/sec. A light-year is the distance that
light can travel in ayear's time. If the sun is 93,000,000 miles away, how many
light-years is it from the earth?

15 If 1 ml of water is spread out as afilm 3 A thick, what area in square meters
will it cover?

16. The areaof a powdered material is 100 m¥g. What volume of water is required
to form a film 10 A thick over the surface?

17. An agate marble is placed in agraduated cylinder containing 35.0 ml of water.
After the marble is added, the surface of the water stands at 37.5 ml. Find the
diameter and surface area of the marble.

18. (a) If there are 6.02 x 10** molecules in 18 ml of water, what is the volume
occupied by one molecule? (b) If the molecules were little spheres, what
would be the radius of a water molecule? (Give the answer in angstroms.)

19. If you should decide to establish a new temperature scale based on the as-
sumptions that the melting point of mercury (—38.9°C) is 0°M and the boiling
point of mercury (356.9°C) is 100°M, what would be (a) the boiling point of
water in degrees M, and (b) the temperature of absolute zero in degrees M?

20. It has been found that the percentage of gold in sea water is 2.5 x 10-'°. How
many tons of sea water would have to be processed in order to obtain 1.0 g of
gold?

21. A solution contains 5.0 g of sodium hydroxide per liter. How many grams will
be contained in 50 ml?

22. A solution contains 40 g of potassium nitrate per liter. How many milliliters of
this solution will be needed in order to get 8.0 g of potassium nitrate?

23. The neck of a volumetric flask has an internal diameter of 12 mm. The usual
practice is tofill avolumetric flask until the liquid level (meniscus) comesjust
to the mark on the neck. If by error one drop (0.050 ml) too much is added, at
how many millimeters above the mark on the neck will the meniscus stand?
Assume a plane (not curved) meniscus.
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25.

26.

27.

28.
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A soap bubble is 3.0 inches in diameter and made of a film that is 0.010 mm
thick. How thick will the film be if the bubble is expanded to 15 inches in
diameter?

(@ A cube measures 1.00 cm on an edge. What is the surface area? (b) The
cube is crushed into smaller cubes measuring 1.00 mm on an edge. What is the
surface area after crushing? (c) Further crushing gives cubes measuring 100 A
on an edge. What is the surface area now? How many football fields (160
ft x 100 yd) would this make?

The unit of viscosity () is called a poise. Viscosity is determined experimen-
tally by measuring the length of time (t) for a certain volume (V) of liquid to
run through a capillary tube of radius R and length L under a pressure P,
according to the Poiseuille eguation

_ PmR*
Y37

What are the units of a poise in the centimeter—gram-second (cgs) system?

The energy of a quantum of light is proportional to the frequency (v) of the
light. What must be the units of the proportionality constant (#)if E= hv?E
is expressed in ergs, and v has the units of sec~'.

Show that the product of the volume of agas and its pressure has the units of
energy.

PROBLEMS B

29

30.

3L

32.

33.

What are the area and the volume of a bar measuring 2 x 4 x 20 cm?

What are the area and the volume of a cylindrical rod with hemispherical ends
if the rod is 1.00 inch in diameter and has an overall length of 55.54 cm?

The driving distance between Los Angeles and San Francisco by one route is
420 miles. Express this in kilometers.

A common type of ultraviolet lamp uses excited mercury vapor, which emits
radiation at 2537A. Express this wavelength (a) in centimeters, and (b) in
nanometers.

A certain spectral line of cadmium often is used as a standard in wavelength
measurements. The wavelength is 0.000064384696 cm. Express this wave-
length (a) in angstroms, and (b) in nanometers.

. What must be the velocity in miles per hour of ajet plane if it goes at twice the

speed of sound? (The speed of sound is 1000 ft/sec under the prevailing condi-
tions.)

The domestic airmail rate is B cents per ounce or fraction thereof. How much

postage will be required for a letter weighing 76 g? Give your answer in terms
ofB.
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If the pnce of platinum 1s $851/0z (ounce avoirdupois), what 1s the cost of a
crucible and cover weighing 12 356 g”

Liquid nitrogen boils at —195 82°C What are the boiling points on the
Fahrenheit and Kelvin scales”

How many kilograms are there m 5 00 megatons of limestone?

Gallium 1s unusual 1n that 1t boils a 1700°C and melts at 29 8°C What are
these temperatures on the Fahrenheit and Kelvin scales”

If 50 0 g of a substance S contains 6 02 x 10-* molecules, and if the cross-
sectional area of each molecule 1s 20 0 A2, what 1s the surface area of a solid
that needs 1 50 g of S to cover 1t with a layer one molecule thick?

(@ If there are 6 02 x 102 molecules 1n 58 3 ml of ethyl alcohol, what 1s the
volume occupied by one molecule” (b) If the molecules were little spheres,
what would be the radius of an ethyl alcohol molecule”? (Give the answer in
angstroms )

A regulation baseball 1s 9 00 inches in circumference What 1s 1ts diameter in
centimeters”

A manufacturer of a glass-fiber insulation material impresses his potential
customers with the ‘fineness ' of his product (and presumably with 1ts insul at-
ing qualities too) by handing them glass marbles # inch in diameter and stating
that there 1s enough glass 1n a single marble to make 96 miles of glass fiber of
the type used m his product If this 1s true, what 1s the diameter of the
insulating glass fibers’

The volume of a red blood cell 1s about 90 um*® What 1s 1ts diameter n
millimeters” (Assume that the cell 1s spherical )

A #inch-diameter marble 1s placed in a graduated cylinder containing 10 0 ml
of water To what level will the liquid rise 1n the cylinder?

A solution contains 0 0500 g of salt per milhiiter How many mulliliters of this
solution will be needed if we are to get 100 g of salt?

A solution contains 1 00 g of sulfuricacid per 100 ml How many grams of acid
will be contained in 350 ml”?

How many grams of sulfuric actd must be added to 500 g of water in order that
the resulting solution be (by weight) 20 percent sulfuric acid’

The average velocity of a hydrogen molecule at 0°C 1s 1 84 x 10°cm/sec (a)
How many miles per hour (mph) 1s this” Molecular gas velocities are propor-
tional to the square root of the absolute temperature (b) At what temperature
will the velocity of a hydrogen molecule be 100,000 mph?

A 10 ml graduated pipet has an 18-inch scale graduated in tenths of milliliters
Wheat 1s the internal diameter of the pipet”

An error of 1 0 mm was made 1n adjusting the meniscus (liquid level) to the
mark 1n a 10 ml volumetric pipet The internal diameter of the pipet stem was
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4.0 mm. Calculate the percentage error in the volume delivered, assuming a
plane (not curved) meniscus.

To what temperature must a bath be heated so that a Fahrenheit thermometer
will have a reading that is three times as large as that on a Celsius
thermometer?

According to Newton's law, the force exerted by an object is equal to its mass
times its acceleration. The unit of force needed to accelerate amassof 1 gby 1
cm/sec? is caled a dyne. What are the units of a dyne in the cgs system?

A budding young chemist decided to throw tradition overboard and include
time in the metric system. To do this she kept the unit "day" to refer to the
usual 24 hr timeinterval we know. She then subdivided the day into centidays,
millidays, and microdays. Solve the following problems. (a8) A 100 yd dash
done in 9.7 sec took how many microdays? (b) A 50 min class period lasts for
how many centidays? (c) A car going 60 mph goes how many miles per
centiday? (d) What is the velocity of light in miles per milliday if it is 186,000
mi/sec? (€) What is the acceleration of gravity in centimeters per microday? if
it is 980 cm/sec??
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Reliability of Measurements

In pure mathematics or in counting, every number has an exact meaning. The
figure 2, for example, means precisely two units (not approximately two units).
In using numbers to express the results of measurements, however, we use
numbers with inexact meanings, because no measurement is perfectly accurate.
If we say that an object has alength of 2 m, we mean that it is approximately 2
m long. We would not be surprised to find that the actual length differs from
2.000000 m.

In expressing the results of measurements, we should use numbers in a way
that indicates the reliability of the result. Suppose two persons measure the
diameter of a dime with a centimeter scale. One person reports a result of 1.79
cm; the other finds the diameter to be 1.80 cm. Both would agree that the
desired reading is near the 1.8 cm mark andjust slightly toward the 1.7 cm side
of that mark. However, one person has estimated the value as 1.79 cm, whereas
the other feels that the edge of the dime is close enough to the mark to report a
value of 1.80 cm. How should the uncertainty be expressed in reporting this
result? It would be correct to report the result either as 1.79 cm or as 1.80 cm,
but it would not be correct to give the average value of 1.795 cm. Thislast figure
implies that the true value is known to lie near the middle of the range between
1.79 cm and 1.80 cm, which is not the case.

Suppose the measurements are repeated with a caliper whose vernier scae
permits careful measurement to the nearest 0.01 cm and estimation to the
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nearest 0.001 cm. Now the two results might be 1.792 cm and 1.796 cm. It
would now be proper to report the average value of 1.794 ¢cm, because the third
decimal place is reasonably well known. It would be even more informative to
report the result as 1.794 £ 0.002 cm. The symbol + is read as "plus or
minus." It shows that the actual results vary by 0.002 cm in either direction
from the reported average value.

In talking about the results of measurements, we distinguish between the
accuracy and the precision of the results. The accuracy of a series of measure-
ments tells how closely the average of the results agrees with the true value of
the quantity that is measured. Theprecision of a series of measurements tells
how nearly the repeated measurements yield the same result. For example,
suppose that the markings on a centimeter scale are placed too far apart (as if
the scale has been stretched). In this case, the results obtained in a series of
measurements of the same object might be quite precise (different measure-
ments would yield nearly the same answer), but they would be inaccurate (the
average result would be far from the true value).

Measurements commonly involve systematic errors. These are errors that are
reproducibly introduced in each measurement because of the construction, use,
or calibration of the equipment (as in the case of the stretched scale). The
precision of the results may give the illusion of accuracy in such cases. For this
reason, it is desirable to make a measurement by various entirely different
methods. If the results still show high precision (close agreement with one
another), then it is unlikely that systematic errors exist. The accuracy of the
measurement can aso be tested by using the same measurement methods on a
"standard sample" whose value has been certified by some reliable institution,
such as the National Bureau of Standards.

M easurements also commonly involve random errors. These are errors whose
size and direction differ from measurement to measurement; that is, they are
unpredictable and unreproducible. They are commonly associated with the
limited sensitivity of instruments, the quality of the scales being read, the
degree of control over the environment (temperature, vibration, humidity, and
so on), or human frailties (limitations of eyesight, hearing, judgment, and so
on). We shall say much more about random error later in this chapter.

SIGNIFICANT FIGURES

All digits of a number that are reasonably reliable are known as significant
figures. The number 1.79 has three significant figures: 1, 7, and 9. The number
1.794 has four significant figures.

The position of the decimal point in a measured value has nothing to do with
the number of significant figures. The diameter of a dime may be given as 1.794
cm or as 17.94 mm. In either case, four significant figures are used.
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PROBLEM:

A student weighs a beaker on a triple-beam balance, finding values of 50.32 g,
50.31 g, and 50.31 g in successive weighings. Express the average weight to the
proper number of significant figures.

SOLUTION:
To obtain the average, add the weights and divide by 3.

50.32 g

50.31 g

50.31g

Total = 150.94 g
Average = 50.3133 g

Because the weighings disagree in the second decimal place, it is not proper to
give the weight to more than the second decimal place. The average weight, to the
proper number of significant figures, is 50.31 g.

Final Zero as Significant Figure

Final zeros after the decimal point are significant figures and are used to
indicate the decimal place to which the measurements are reliable. Thus 1.0cm
indicates alength reliably known to tenths of a centimeter but not to hundredths
of a centimeter, whereas 1.000 cm indicates a length reliably known to thou-
sandths of a centimeter. A very common mistake is leaving out these zeros
when the measured quantity has an integral value.

PROBLEM:
Give the value of a 10 g weight to the proper number of significant figures. The
balance on which the weight is used will respond to weight differences of 0.0001 g.

SOLUTION:
The weight is given as 10.0000 g, to show that it is reliable to 0.0001 g.

When a number has no zeros after the decimal point, final zeros before the
decimal point may or may not be significant, depending upon the usage. If we
say that there are 1000 students enrolled in a school, dl the zeros probably are
significant. But if the population of acity is given as 360,000, the last two or
three zeros are not significant, because daily changes make the population
uncertain by perhaps several hundred persons. The final zeros in this case are
used only to indicate the position of the decimal point. A convenient way to
indicate reliability of anumber that has final zeros before the decimal point is to
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Significant Figures in Results of Calculations

The results of measurements often are used to calculate some other result. In
such a case, the result of the calculation should be expressed with an appropri-
ate number of significant figures to reflect the reliability of the original mea-
surements. There are two rules for this procedure.

1. Addition or subtraction. The values to be added or subtracted should all be
expressed with the same units. If they are expressed in scientific notation, they
should al be expressed with the same power of 10. The result should be
rounded off so that it has only as many digits after the decimal point as the
number with thefewest digits after the decimal. For example, consider the sum
of the following weights:

13.8426 g
7645 g

708 g
Sum = 785.4226 g

This mathematical sum is avery misleading statement because it contains seven
significant figures. It impliesthat the total weight is known to the nearest 0.0001 g
when, in fact, one of the weights being added is known only to the nearest 0.1 g
and another only to the nearest 0.01 g. The weight known least reliably (to the
fewest decimal places) limits the reliability of the sum. Therefore, the sum is
properly expressed as 785.4 g. (Note that the number of significant figuresin the
weightsisirrelevant in applying this rule for addition or subtraction. The proper
result has four significant figures, although one of the weights being added has
only three significant figures. It is the number with the fewest digits after the
decimal point that determines the position of the least reliable digit in the
answer.)

2. Multiplication or division. The product or quotient should be rounded offto
the same number of significant figures as the least accurate number involved in
the calculation. Thus, 0.00296 x 5845 = 17.3, but 0.002960 x 5845 = 17.30.
However, this rule should be applied with some discretion. For example, con-
sider the following multiplication:

0.00296 x 5845 x 93

The rule indicates that the result should be rounded off to two significant
figures, so that the product would be 1600, or 1.6 x 103 However, an error of
+ 1 in the value of 93 is not much more significant than an error of £ 1 in 102; we
can say that 93 almost has three significant figures. Because the other numbers
involved al have at least three significant figures, it would be reasonable to
report the result of this multiplication as 1.61 x 102 (using three significant
figures). Obviously, such decisions must be made by common sense rather than
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a hard and fast rule. The best situation would be to have a range of error for
each number; then the calculation could be performed with al the largest or dll
the smallest values to see which digits in the result are reliable.

A case can be made for rounding off al numbers involved in a calculation
before the calculation is actually made. However, in this age of hand cal-
culators this procedure adds little except extra effort. The simplest approach
probably is to enter all the numbers of a calculation through the keyboard with-
out regard to significant figures. Then, by inspection at the end of the calcula-
tion, determine how many decimal places should be used (for addition and
subtraction) or how many significant figures should be used (for multiplication
and division) in thefinal result. The calculator cannot make the decision about the
proper number of decimal places or significant figures to use; only the operator can
do this. One of the most common errors in the use of calculators is to write
down dl of the digits that appear in the display as a result of a calculation,
regardless of their significance. You must learn to think about your answers.

A pure number such as 3 or 4 has an unlimited number of significant figures
(4.000000___ ), as does a defined quantity such as 7 (3.14159...) or e
(2.7182818 . .. .). Do not fal into the trap of excessively rounding off results that
come from equations using pure or derived numbers. For example, if you want
to find the volume of a sphere whose radius has been measured as 15.13 cm,
you shouldn't round off the answer to 1 x 10*cm?just because you are going to
use the formulaV = 4#r3, in which 4, 3, and = each appears to have only one
significant figure. It is the measured values that determine the number of sig-
nificant figures. In this case, the volume should be expressed to four significant
figures as 1.451 x 10*cm? Your calculator probably has a 7 key that will give
with one stroke the value of = to 8 or 10 decimals.

DISTRIBUTION OF ERRORS

We have talked about significant figures and the general unreliability of the
"last figure" of a measurement. Now we shall talk about just how unreliable
these last figures are. Your experience has shown that really gross errors rarely
occur in a series of measurements. Suppose you were able to make an infinite
number of measurements on the same quantity (cal it x). You would not be
surprised if, on plotting each observed value ofx against the frequency with
which it occurred, you obtained a symmetrical curve similar to that shown in
Figure 5-1. One of the advantages of making an infinite number of measure-
ments is that the average (X) of the values will be equal to the "true value" (u),
represented by the dotted vertical line drawn from the peak of the curve. As
expected, the more a value ofx deviates fromu, the less frequently it occurs.
This curve is symmetrical because there is equal probability for + and - errors;
it is caled anormal distribution curve. If you made your measurementsin amore
careless manner or with aless sensitive measuring device, you would obtain a
distribution curve more like that in Figure 5-2, shorter and broader but with the
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FIGURE 5-1
Normal distribution curve with a small standard deviation.

same general shape. The breadth of a distribution curve (the spread of results)
is a measure of the reliability of the results. Two major ways of describing this
spread are average deviation and standard deviation.

Average Deviation

The deviation of each individual measurement (x) from the average (x) of all the
measurements is found by simple subtraction; the deviation of the i th mea-
surement is x; - X. We are interested in the sizes of the deviations, without
regard to whether they are + or -. That is, we are interested only in the
absolute values of the deviation, |x; — x|. The average deviation is simply the
average of these absolute values:

X, = X| + [xg —X| + |xg — X + -+ + |x, — X

Average deviation =

n

FIGURE 5-2
Normal distribution curve with a large standard deviation.
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Simple expressions for x and average deviation can be made by using the
symbol 2, which means "the sum of" whatever follows it:

. 2y
§= 2N
n
and
Sy -
Averagedeviation:——mh———x‘- (5-D

n

In each case, the sum of n values is understood. One important point to re-
member: X may be calculated for any number of measurements, but only for an
infinite number of measurements will x = u, the "true value."

PROBLEM:

Five persons measure the length of a room, getting values of 10.325 m, 10.320 m,
10.315 m, 10.313 m, and 10.327 m. Find the average value and the average devia-
tion.

SOLUTION:

Add the separate values and divide by 5 to get the arithmetical mean. Set opposite
each value its deviation from the average, without regard to sign. Take the average
of these deviations.

Measurement Deviation

Xy X — 5(|

10.325m 0.005 m
10.320 0.000
10.315 0.005
10.313 0.007
10.327 0.007

3x,= 51600 m 0.024 m = 3|x, - X|
i= % = 10320 m %=X 2 00048 m = Average deviation
D

The average is 10.320 m, with an average deviation of 0.0048 m. It is proper
to write the average as 10.320 m, because the deviation affects digitsin only the
third decimal place. It is not correct to give the length as 10.32 m; this implies
that the measurement is uncertain in the second decimal place. Average devia-
tion is one of the simplest measures of reliability of measurements (the spread
of experimental values), but a better estimate of reliability can be made with
standard deviation.



Distribution of Errors 51

Standard Deviation

The standard deviation is the square root of the variance (s?). The variance is
almost the same as the average of the squares of the deviations of the measure-
ments from the average (X); it is defined as

variance = s2 = F1 7 BFF (= DT (g— DT+ -+ (= D)?
n-1
3(x; — X)?
— (ni_ 1) (5_2)

For reasons that we need not discuss here, n - 1 is used as the denominator
instead of n. Of course, for very large values of n (say, 1000), there is no
appreciable difference between n and n - 1. Thus, for very large numbers of
measurements, you really can say that the variance is the average of the
squares of the deviations. Because the standard deviation is the square root of
the variance, we have

I Sy, — N2

standard deviation = s = \ (5-3)

The standard deviation will have the same units as the original measurements,
and the same units (but not the same value) as the average deviation.

PROBLEM:
Calculate the standard deviation (s) of the measurements made in the preceding
problem.

SOLUTION:

As in the last problem, first find the average of the measurements and then
subtract it from each of the individual measurements to get the deviation. The sum
of the squares of these deviations divided by n - 1 is the variance.

Measurement Deviation (Deviation )?
Xy (x; - X) (x; - X)2
10.325 m 0.005 m 0.000025 m*
10.320 0.000 0.000000
10.315 -0.005 0.000025
10.313 -0.007 0.000049
10.327 0.007 0.000049
3x; = 51.600 m 0.000148 m? = 3(x; — X)*
x = 10.320 m

.000148 — 0.006] m

. 2
Standard deviation = s = \\/ﬁ; - 2 \/O
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In order to make the value ofs useful for other calculations, it is customary to
write it to one more decimal place than the least significant figure of the mea-
surements; we shall do the same for x when it is used in the calculation of s,but at
no other time. If we did not adopt such a convention, we would frequently find,
for a good set of data, that a standard deviation rounded off to the decimal place
corresponding to the least significant figure of the measurements would have a
value of 0. This would be a useless and misleading result because variations in
the measurements actually exist. A good compromise is to write the average to
the correct number of significant figures as discussed on p 46, but to write the
error statement to one more decimal place than corresponds to the least signifi-
cant figure in the average. An error statement is the average deviation, the
standard deviation, or one of the various confidence interval s to be discussed on
pp 56-57. Thus, in the examplejust shown, you would write

x = 10.320 £ 0.0048 m (for average deviation)
x = 10.320 + 0.0061 m (for standard deviation)

For avery poor set of data, with avery large standard deviation, it is foolish to
show the error statements to one more decimal place than the least significant
figure. If the room measurementsjust cited actually had a standard deviation of
+0.0756 m, it means that you were silly to think of measuring to the nearest
0.001 m, and in any case you should round the standard deviation to £0.076 m.
The decision as to when you do, or do not, write the error statement to one
more decimal place than the least significant figureis arbitrary. (Some profes-
sors say that you should use the extradecimal place if the standard deviation is
less than 0.4% of the average of the measurements.)

Many calculators permit you to determinex ands directly without the need of
setting out the calculations as described in the last problem. After entering each
measurement through the keyboard, you press the %+ key. After entering all of
the numbers in this fashion, you press the x key (or keys) to get the average and
then the s key (or keys) to get the standard deviation. The average—which may
be displayed to, say, eight decimal places—must of course be rounded offto the
proper number of significant figures.

A small complication may arise from the use of calculators that determine X
and s directly. With these calculators, the standard deviation is calculated from
the average deviation that includesall of the digits in the display. The resulting
value probably will differ slightly from the one you would obtain if you previ-
ously rounded the average to one more decimal place than the least significant
figure. This difference usually is small and can be ignored. Thus you need not
worry about somewhat different answers obtained with different types of
calculators.

Probability Distribution for Large Numbers of Measurements

In order to appreciate the usefulness of the standard deviation as a measure of
reliability, we must take a closer look at the curves in Figures 5-1 and 5-2. The
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mathematical equation for these curves (when they represent avery large num-
ber of measurements) is called the Gaussian distribution equation. In one of its
forms, the frequency of occurrence, F, is given by

rlomm] e &4

where cr = s (the standard deviation) when n is very large, just as u = x when
n is very large. We use these special symbols for s and * to emphasize that
this Gaussian equation does not apply to the curves obtained with only a small
number of measurements. Note that Equation 5-4 is written with the base e
rather than the base 10 (see p 17 for a discussion of natural logarithms). We
next discuss some important characteristics of this distribution curve.

1. Sze of a and the shape of the curve. At the peak of the curve, X = u
and

_ 1
T oo2m)t

In other words, the maximum height of the Gaussian curve is de
termined solely by the value of cr and the constant 2. If cr is small
because the errors are relatively small, then F is large and the curve is
tall (Figure 5-1). If cr is large because of relatively large errors, then
F is small and the curve is short (Figure 5-2). For any other value ofx

(v )2

than ¥, the exponent = ;’ )—is larger for a smaller value of cr, and
U

the sides of the curve thus fall off faster for small cr (as in Figure

5-1) than for large cr (as in Figure 5-2).

2. Sgnificance ofthe area under the curve. Consider the very small black-
ened area in Figure 5-1. Its width is the infinitesimal distance dx; its
height is the value of Ffor the value ofx we have chosen. Because dx is
infinitesimal, we can regard this area as a rectangle. The area Fdx of
the rectangle represents the number of measurements of x that lie
between x andx + dx. If we take the consecutive sum of al such small
areas from one end of the curve to the other, we have the total area
under the curve, and we have included all our measurements. Because
of the way that F is defined, the total area under the curve is 1.000,
regardless of the size of cr. All probability distributions share this
characteristic that the total area under the curve equals unity. The area
under a portion of the curve represents the number of measurements of
x lying between the limiting values of x that bound the portion. For
example, if the area under a portion of the curve is 0.200, then that
portion of the curve represents 20.0 percent of the measurements.
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3. Relationship between cr and area under the curve. If we express the

values ofx in terms of a, we find that the normal distribution curve
always has the same shape, regardless of the size of cr. That is, the area
under the curve for a particular multiple of cr on either side of u is the
same for any normal distribution curve.

Values of x between Area under this portion of the curve
pw- o andu + cr 0.683 (shaded area in Figure 5-1)
p-2cand u + 20 0.954 (shaded area in Figure 5-2)
u—3cand u + 3o 0.997

Thus, whenever you have a very large number of measurements, the
probability is that 68.3% of them (about two-thirds) will have values
within the range u £ cr (that is, within one standard deviation of the
average value). Similarly, 95.4% of the measurements (about 19 out of
20) probably will have values within the range u = 2 ¢, and only 0.3%
of them (3 in 1000) are likely to have values outside the range u + 3 0.
This adso means that the probability is only 0.3% (3 times out of 1000
measurements) that any single measurement will yield a value differing
by more than 3 cr from the value u.

. Confidence interval and confidence level. We have seen that 3 out of 1000

measurements probably will have values outside the range u + 3 0.
The range of values obtained in a particular large set of measurements
will depend on the particular extreme values that happen to be ob-
tained. Because the normal distribution curve is so regular, it is useful
to express the average result in a form that reflects some particular
percentage of the measurements, rather than listing the particular ex-
tremes obtained. For example, you might wish to report the result as
u * to, wheret is chosen so that the range will include some particul ar
percentage of the measurements. For example, we have seen that a
choice oft = 2 will yield a range that includes 95.4% of the measure-
ments. Suppose you wish to report a range that includes 80% of the
measurements; in this case, you will need to consult at table such as
Table 5-1 tofind the appropriate value of . We wish to find the val ue of
t corresponding to a confidence level of 80%: the confidence level is the
probability that any measurement picked at random will fall within the
range u * tcr. Using the bottom line of the table (representing an infi-
nite number of measurements), we see that the desired value of ¢ is
1.282. Therefore, we can say that there is aprobability of 80% that any
random measurement will fall within the range u + 1.282¢; thisrange
is called the confidence interval. When aresult is reported with a confi-
dence interval, the corresponding confidence level should be stated to
make the range meaningful. For example, aresult might be reported as
25.342 + 0.003 with a confidence level of 80%.
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TABLE 5-1
The t Values for Various Sample Sizes and Confidence Levels
Sanpl e* Confidence |evel (percentage)
1ze
s(n) 50 60 70 80 0 9% 9
2 1 000 1376 1 963 3078 6314 12706 63 657
3 0816 1 061 1 386 1 886 2920 4 303 9 925
4 0765 0.978 1 250 1 638 2353 3182 5 841
5 0741 0 941 1 190 1 533 2132 2776 4604
6 0727 0920 1 156 1 476 2015 2571 4032
7 0718 0906 1 134 1 440 1 943 2 447 3.707
8 0711 0896 1119 1 415 1 895 2 365 3499
9 0706 0889 1 108 1 397 1 860 2306 3355
10 0.703 0883 1 100 1 383 1833 2262 3 250
20 0688 0 861 1 066 1 328 1 729 2093 2 861
30 0683 0854 1 055 1311 1 699 2 045 2756
40 0 681 0 851 1 050 1 303 1 684 2 021 2704
50 0680 0 849 1 048 1 299 1 676 2 008 2678
60 0679 0848 1 046 1 29% 1671 2000 2 660
120 0677 0845 1 041 1 289 1 658 1 980 2617
© 0674 0842 1 036 1 282 1 645 1 968 2576

I Sk

* Statistical manuals usually fist degrees of freedom in this column with values that are equal to the sample size minus one

PROBLEM:

The average result of a set of 1000 measurements 1s to be reported with a confi-
dence interval representing aconfidence level of 80%. The average (the true value)
is 2756, and the standard deviation is 13.0. Find the confidence interval.

SOLUTION:

The set of 1000 measurements is so large that the value of ¢ differs negligibly from
that for an infinitely large set of measurements, so we use the bottom row of Table
5-1. Looking 1n the column for an 80% confidence level, we find the desired value
of t to be 1.282. Therefore, the desired confidence interval is

wt to = 2756 + (1.282)(13.0) = 2756 + 17

Either of the following two statements could be made.

1. The probability is 80% that any value taken at random from the 1000 mea-
surements will lie within the interval 2756 + 17.

2. Of the 1000 measurements, 800 (or 80%) lie within the interval 2756 + 17.
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Probability Distributions for Small Numbers of Measurements

In many cases, it is not practical to make large numbers of measurements. In
chemical analyses, there often is only enough material to make a few measure-
ments. The desire usually is tofind atrue value for the measured quantity, but
the average of a small number of measurements is unlikely to represent the true
value. You can see this if you make several small sets of measurements of the
same quantity; the averages of the various groups are likely to differ somewhat
from one another. Most people have the intuitive feeling that the average will be
closer to the true value as the number of measurements increases. The formal
mathematical statements of probability theory reflect this same viewpoint. It is
possible to make some statements about the results of a small number of mea-
surements, but these statements must be made with less confidence than we
have in statements resulting from large numbers of measurements.

For this discussion we use a distribution curve as before, but thistimeitis not
represented by an equation as simple as the Gaussian equation. In fact, there is
not just one curve; there are many, one for each size of sample (different
number of measurements). It isn't practical to draw a different curve for each
size of sample, but we can describe the changing nature of the distribution
curves: as the size of the sample gets smaller, the corresponding distribution
curve becomes shorter and broader than the ones shown in Figure 5-1 for the
same value ofs. The same statement is true for Figure 5-2, where alarger value
of sapplies. This changing nature of the distribution curve is taken into account
in the t table (Table 5-1), which can be used in place of the curves.

The Precision of a Single Measurement

The calculation of standard deviation (Equation 5-3) is the samg whether you
have many measurements or only afew; sample size affects only the selection
of thet value. For a single measurement taken at random from a small number
(n) of measurements, the confidence interval for the desired confidence level is

x tts (5-5)

This is a statement of the precision of a single measurement.

Note that you don't know the true value (you didn't take many measure-
ments). You must use the average (x) of your measurements as the best mea-
sure available as a substitute for the true value. Note also that the value of tyou
choose will depend on the sample size (n)as well as on the confidence level you
desire. The confidence interval will get larger as the number of determinations
gets smaller, or as the confidence level increases.

The Precision of the Mean

The main objective of making a series of measurements usually is to find the
true value, and we would like to indicate the confidence we may have in the
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werage Of our values. Because the average of many measurements is more
ikely to be correct than the average of afew, our confidence interval should get
smaller as we increase the number of measurements. This is commonly ex-
ressed quantitatively by using the standard deviation of the mean, defined as

S = standard deviation of the mean

Vn

Mote that the standard deviation of the mean decreases with the square root of
1, not the first power. Thus, making 100 measurements rather than 4 does not
mprove the precision by afactor of 4° = 25, but only by a factor of V25, or 5.
The useful statement we can make with the standard deviation of the mean is
the following: for a series of n measurements and a specified confidence level,
the true value of xwill lie in the interval

xxt () (5:6)

This is a statement of the precision of the mean.

PROBLEM:
The density of aliquid is measured by filling a 50 ml flask as close as possible to the
index mark and weighing. In successive trials the weight of the liquid is found to
be 45.736 g, 45.740 g, 45.705 g, and 45.720 g. For these weights calculate the
average deviation, the standard deviation, the 95% confidence interval for a single
value, and the 95% confidence interval for the mean.

SOLUTION:
Because the weighings are all for the same measured volume, we first average the
weights. Let v refer to the weight measurement.

Weight Deviation (Deviation)*
Xi ;= ¥ (x; — x)?
45.736¢ 0.0107 g 0.000114 g-
45.740 0. 0147 0. 000216
45,705 0.0203 0. 000412
45.720 0. 0053 0.
2y, = 182901 g 3jx; - x = 0.0510 g (x, - ©)* = 0.000770 g-
o 3 TR R PR Y DRSS
X == Average Qeviation . 5= 3 -
= 457253 g ~ 0.0128 ¢ = 00160 g

From the ¢ table, thet value of 3.182 isfound in the row for sample size of 4 and in
the column for 95% confidence level. The precision of a single value is therefore
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45.725 + (3.182X0.0160) = 45.725 + 0.0509 g

There is a 95% probability that any weight value picked at random has a value
that lies within 0.0509 g of the average. The precision of the mean is given by
(0.0160)
45.725 £ (3.182) = 45.725 + 0.0255
Va g

That is, there is a 95% probability that the true value of the weight of 50 ml of this
liquid lies within the interval 45.725 + 0.0255 g.

Relative Error

It frequently is convenient to express the degree of error on a relative basis,
rather than on an absolute basis as above. A relative basis has the advantage of
making a statement independent of the size of the measurements that were
made. For example, the statement that a solid contains 10% silver is a relative
statement; it says that one-tenth of the solid is silver, and it is understood that a
large sample of the solid would contain more grams of silver than a small one.
Percentage is "parts per hundred," and it is found for this example by multiply-
ing the fraction of the sample that is silver (in this case, 0.1) by 100. It would be
as correct to multiply the fraction by 1000 and call it ** 100 parts per thousand,"
or to multiply the fraction by 1,000,000 and call it **100,000 parts per million."
The choice of parts per hundred (percentage) or parts per thousand or million is
determined by convenience. If the fraction were very small, say 0.00005, it
would be more convenient to call it 50 parts per million than to call it 0.005 parts
per hundred or 0.005 per cent.

PROBLEM:
Express the 95% confidence level of the standard deviation of the mean obtained
in the previous problem as percentage, as parts per thousand, and as parts per
million.

SOLUTION:
The 95% confidence level of the standard deviation of the mean was found to be
+0.0255 g, where the weight itself was (on the average) 45.725 g. The fractionof
the total weight that might be error is

0.0255g _
457259 ~ 0.000558

The relative error thus can be written as

(0.000558X100) = 0.0558 parts per hundred = 0.0558 percent
(0.000558)(10% = 0.558 parts per thousand (ppt.)
(0.000558)(10% = 558 parts per million (ppm.)
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Calculator Tips

Equation 5-3, which defines the standard deviation, can be rewritten in the form

s = \/%ﬁ (57

The advantage of thisform isthat you need not find the average before proceed-
ing to find the deviations. If you use a calculator that doesn't have a built-in
program for finding s and x directly, you can easily enter each of your mea-
surements in a way that accumulates 3.x;in one memory storage and 3x2 in
another. After entering al of the data, you can use 2 x; and 3 x3in Equation 5-7
to gets, and furthermore you can divide %x;by » to obtainx, eventhough you
didn't have to find it to calculate s.

EPILOGUE

In an age requiring closer looks at the factors that affect our health, safety,
environment, and life style, it will become more and more important to examine
carefully andintelligently thestatistical significanceof thedataonwhichimpor-
tant decisions are based. The intelligent use of your calculator can be of enor-
mous help in these kinds of evaluations. You must always resist the urge to
include far morefiguresin your reported results than the datajustify. Calcula-
tions and computers cannot improve experimental reliability, and it is your
responsibility to round off the final answer to the proper number of significant

figures.

PROBLEMS A

1. State the number of significant figures in each of the following measurements.
(&) 374; (b) 0.0374; (c) 3074; (d) 0.0030740; (e) 3740 (f) 3.74 x 10% (g) 75
million; (h) 21 thousand; (i) 6 thousandths; (j} 2 hundredths.

2. Express the answer in each of the following calculations to the proper number

of significant figures (assume that the numbers represent measurements).
(@ 3.196 + 0.0825 + 12.32 + 0.0013
(b) 72156 - 0.394
(c) 525.3 + 326.0 + 127.12 + 330.0
(d 523 x 1072+ 6.01 x 107%+ 8 x 107* + 3.273 x 107*

3.21 x 432 x 650
(e 563

8.57 x 107%x 6.02 x 10* x 2.543

361 x 907
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4.265 x (3081)2 x 8.275 x 10~*

9) 0.9820 X 10035
h 6.327 x 10> x 7.056 x 107 x 9.0038 x 10~°
(h) 6.022 x 102 x 27.00 x 10~

. Water analysts often report trace impurities in water as "parts per million”—

that is, parts by weight of impurity per million parts by weight of water. In an
analysis, 2.5 liters of a water sample are evaporated to a very small volume in
aplatinum dish; the residue is treated with a sensitive reagent that develops a
red color, whose intensity is a measure of the amount of nickel present. The
amount of nickel present is found to be 0.41 mg. How many parts per million
of nickel were present in the original sample of water? (Assume that the
density of water is 1 g/ml.)

. State the precision, both in parts per thousand and in percentage, with which

each of the following measurements is made.

(a) 578 with a standard deviation of 2.0

(b) 0.0578 with a standard deviation of 0.00020

(c) 5078 with a standard deviation of 2.0

(d) 0.005078 with a standard deviation of 0.000030
(e) 0.0050780 with a standard deviation of 0.00000010
(H 5078 with a standard deviation of 50

(g) 5.78 x 10> with a standard deviation of 2.0 x 10}

. A radioactive sample shows the following counts for one-minute intervals:

2642; 2650; 2649; 2641 2641; 2637; 2651 2636. Find the average deviation, the
standard deviation, and the 90% confidence interval for a single value and for
the mean.

. A student wishes to calibrate a pipet by weighing the water it delivers. A

succession of such measurements gives the following weights: 5.013 g; 5.023
g; 5017 g; 5.019 g; 5.010 g; 5.018 g; 5.021 g. Calculate the average deviation
and the 95% confidence interval for a single value.

. In determirii ng the viscosity of aliquid by measuring the time required for 5.00

ml of the liquid to pass through a capillary, a student records the following
periods: 3 min 35.2 sec; 3 min 34.8 sec; 3 min 35.5 sec; 3 min 35.6 sec; 3 min
34.9 sec; 3 mm 35.3 sec; 3 min 35.2 sec. Find the average deviation and the
70% confidence interval for a single value, expressing both as a percentage.

. A student wishes to determine the mole weight of agas by measuring the time

required for a given amount of the gas to escape through a pinhole. He ob-
serves the following time intervals: 97.2 sec; 96.6 sec; 96.5 sec: 97.4 sec; 97.6
sec; 97.1 sec; 96.9 sec; 96.4 sec; 97.3 sec; 97.0 sec. Find the average deviation
and the 99% confidence interval for the mean, expressing both in parts per
thousand.

. The height (h) to which aliquid will rise in a capillary tube is determined by

the force of gravity (g), the radius (r) of the tube, and the surface tension (y)
and density (d) of the liquid at the temperature of the experiment. The rela-
tionshipisy = ihdgr. A student decides to determine the radius of a capillary
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10.

1.

by measuring the height to which water rises at 25.0°C. Several attempts yield
the following heights: 75.7 mm; 75.6 mm; 75.3 mm; 75.8 mm; 75.2 mm. Find
the average deviation of these heights and the 80% confidence interval for the
mean, expressing both in parts per thousand.

At 25.00°C, the density and surface tension of water are 0.997044 g/ml and
71.97 dynes/cm, respectively. What actual values for these properties should
be used with the data of Problem 9 to determine the radius of the capillary?

A sample of a copper aloy is to be analyzed for copper by first dissolving the
sample in acid and then plating out the copper electrolytically. The weight of
copper plated is to be measured on abalance that is sensitive to 0.1 mg. The
dloy is approximately 5% copper. What size of sample should be taken for
analysis so that the error in determining the weight of copper plated out does
not exceed one part per thousand? (Remember that two weighings are needed
in order to find the weight of copper.)

PROBLEMS B

12.

13.

14.

15.

State the number of significant figuresin each of the following measurements.
(8) 6822; (b) 6.822 x 10-%; (c) 6.82; (d) 682; () 0.006820; (f) 6.82 x 10% (Q)
0.0682; (h) 34 thousandths; (i) 167 million; (j) 62 hundredths.

Express the answer in each of the following cal culations to the proper number
of significant figures (assume that the numbers represent measurements).
(@ 0.0657 + 2377 + 5369 + 0.0052
(b) 365.72 - 0.583
(c) 365.2 + 27.3 + 968.45 + 5.62
(d) 427 x 10+ 105x 10+ 5x 107%+ 1234 x 10~
, . 654 x 1.23 x 464
) 231
6.55 x 1072"x 2045 x 7.34 x 103
565 x 432
5280 x (2885)"x 6.570 x 10~
@ 4.62% x 0.8338
h %.08 x 4.712 x 1073x 7.308 x 10~*
™) 6.547 x 107*" x 6.02 x 10

)

Water analysts often report trace impurities in water as "parts per million”’—
that is, parts by weight of impurity per million parts by weight of water. A
swimming pool whose dimensionsare20 X 50 x 9m has 141b of chlorine added
as a disinfectant. How many parts per million of chlorine are present in this
swimming pool? (Assume that the density of water is 1.00 g/ml.)

State the precision, in both percentage and parts per thousand, with which
each of the following measurements is made.

(a) 6822 with a standard deviation of 4.0

(b) 6.822 x 10~* with a standard deviation of 0.00040
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16.

17.

18.

19.

20.

21.

22.

23.

Reliability of Measurements

(c) 6.82 with a standard deviation of 4.0 x 1073
(d) 682 with a standard deviation of 4.0

(e) 0.00682 with a standard deviation of 0.0000040
(f) 6.82 x 10* with a standard deviation of 4000
(g) 0.0682 with a standard deviation of 0.004

A radioactive sample shows the following counts for one-minute intervals:
3262; 3257; 3255; 3265; 3257; 3264; 3259. Calculate the average deviation and
the 60% confidence interval for the mean.

A student wishes to calibrate a pipet by weighing the water it delivers. A
succession of such determinations gives the following weights in grams: 4.993;
4.999; 4.991; 4.994; 4.995; 4.995. Find the average deviation, the standard
deviation, and the 70% confidence interval for a single value.

If the viscosity of a given liquid is known, the viscosity of another may be
determined by comparing the time required for equal volumes of the two
liquids to pass through a capillary. To do this, a student makes the following
observations of time intervals: 4 min 9.6 sec; 4 min 8.8 sec; 4 min 10.2 sec; 4
min 9.8 sec; 4 min 9.0 sec. Find the average deviation and the 90% confidence
interval for the mean, expressing both in parts per thousand.

The time required for a given amount of gas to effuse through a pinhole under
prescribed conditions is a measure of its molecular weight. A student making
this determination observes the following effusiontimes: 1 min 37.3 sec; 1 min
38.5sec; 1 min36.9sec; 1 min37.2 sec; 1 min36.5sec; 1 min38.7 sec; 1 min
37.0 sec. Find the average deviation and the 99% confidence interval for a
single value, expressing both as percentages.

The surface tension of aliquid may be determined by measuring the height to
which it will risein acapillary of known radius. A student makes the following
observations of capillary rise with an unusual liquid that he hasjust prepared
inthe laboratory: 63.2 mm; 63.5 mm; 62.9 mm; 62.8 mm; 63.7 mm; 63.4 mm.
Find the average deviation of these heights and the 90% confidence interval
for the mean, expressing both in parts per thousand.

How accurately should the values of liquid density and capillary radius be
known if al of the figures in the measurements in Problem 20 are to be
considered significant?

A graduated tube arranged to deliver variable volumes of a liquid is called a
buret. If a buret can be read to the nearest 0.01 ml, what total volume should
be withdrawn so that the volume will be known to a precision of 3 parts per
thousand? (Remember that two readings of the buret must be made for every
volume of liquid withdrawn.)

At some time or another, nearly everyone must decide whether to reject a
suspicious-looking result or to include it in the average of all the other results.
There is no agreement on what criteria should be used but, lacking information
about errors made in the experimental procedure, arejection may be made on
the following statistical basis. If d and r are, respectively, the differences



Problems B 63

between the questionable result and the values closest to it and farthest from
it, then there is a 90% probability that the questionable result is grossly in
error and should be rejected if

for 5 values, d/r > 0.64

for 4 values, dir > 0.76

for 3 values, dir > 0.94
Which, if any, result should be rejected from the following series of measure-
ments?

(8 9.35, 9.30, 948, 9.40, 9.28 (C) 2534, 2429, 2436
(b) 9.35, 9.30, 9.48, 9.32, 9.28 (d) 2534, 2429, 2520
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Graphical Representation

Measurements made on chemical and physical systems often are presented in
graphical form. The graph may show vividly how different variables are related
to each other, or how the change in one variable affects the change in another.
Another reason for graphical representation is that an important derived prop-
erty can be obtained from, say, the slope or intercept of a straight-line graph. In
this chapter, we discuss only those kinds of graphs and graph papers that are
normally used at an elementary level in chemistry.

CONSTRUCTING A GRAPH

If the following guidelines are followed, the resulting graph generally will have
maximal usefulness.

1. Use a scale large enough to cover as much as possible of the full page
of graph paper. Do not cramp amiserable little graph into the corner of
a large piece of graph paper.

2. Use a convenient scale, to simplify the plotting of the data and the
reading of the graph.
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3. Do not place the "zero" or origin of the coordinate system at one
corner of the graph paper if doing so would make a small, cramped,
inconvenient scale.

4. Label the axes (the vertical axis is the ordinate, the horizontal axis the
abscissa) with both units and dimensions.

5. When possible and desirable, simplify the scale units in order to use
simple figures. For example, if you wanted to plot as scale units 1000
min, 2000 min, 3000 min, 4000 min, etc., it would be simpler to use the
figures 1, 2, 3, 4, etc. and then label the axis as min x 1073 Such
labeling states that the actual figures (in minutes) have been multiplied
by 10-%in order to give the simple figures shown along the axis.

6. Draw a smooth curve that best represents al the points; such a curve
may not necessarily pass through any of the points. Straight-line seg-
ments should not be drawn between consecutive points, unless there is
a reason to believe that discontinuities (angles) in the curve really do
occur at the experimental points; such reasons almost never exist.

PROPERTIES OF A STRAIGHT-LINE GRAPH

Whenever possible, cast datainto such aform that a straight-line graph results
from their plotting. A straight line is much easier to draw accurately than a
curved one; often one can obtain important information from the slope or
intercept of the straight line. If the two variables under discussion are x and y
(the convention is to plotx as the abscissaand y as the ordinate), and if they are
linearly related (i.e., if the graph is a straight line), the form of the mathematical
equation that represents this line is

y=mx+Db (6-1)

No matter what the value of 1, whenx = 0, theny = b. It isfor this reason that
biscalled the"y intercept,”” the point at whichtheline intersectsthe y axis (see
Figure6-1).

If two arbitrary points (x;,y ) and (x,, y,) are selected from this line, both sets
of points must satisfy the general equation for the line. Consequently, we have
two specific equations:

ye = mxy + b (6-2)

and yy = mx, + b (6'3)
If we subtract the second equation from the first, we obtain

Y2 - Y1 = mxy - mx; = mixg - xy) (6-4)
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which, when rearranged, gives
m = Yo — V1 (6_5)
Xog— Xy

By looking at Figure 6-1, you can see that (v, - y,) and (x,- x,) are the two
sides of the right triangle made by connecting the two arbitrary points The

ratio of the sides, 22—21 15 the slope of the curve, this ratio has the same

value whether the two arbitrary points are taken close together or far apart It
1s for this reason that m 1s said to be the "slope’ of the line

PROBLEM.

The junction of two wires, each made of a different metal, constitutes a ther-
mocouple Some pairs of metals can generate a significant electrical voltage that
varies substantially wath the temperature of thejunction The following values of
voltage (in millivolts) were observed at the temperatures (°C) shown for ajunction
of two alloys, chromel and alumel
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T (temperature, °C) 25.0 500 750 100 125 150 175 200
V (voltage, mv) 023 120 224 332 434 535 633 731

Plot these values of millivolts and temperature. From the resulting graph, deter-
mine the mathematical equation that describes V as a function of T.

SOLUTION:

The graph of these values of V and T is shown in Figure 6-2. Note that the best line
passes through only one of the experimental points. In order to include the v
intercept, one must take some negative values along the V axis. The value of the v
intercept then can be taken directly from the graph; it is -0.80. The slope of the
line is calculated by selecting two convenient points on this line, as shown, then
taking the ratio of the two sides of the triangle formed from these points: in the
figure, it is the ratio 2.0/50 = 0.040. Knowing the slope and the v intercept, we can
directly write the mathematical equation for the relationship between V and T as

V = 0.0407 - 0.80

Students often select two of the experimental points in order to calculate the slope
of a straight-line function; doing so usually is bad practice, because there are
experimental errors inherent in the individual data points. The straight line that
best represents all the points minimizes the experimental errors, and the slope
calculated from this best straight line thus will (usually) be more reliable than one
calculated from two randomly selected experimental points.
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Frequently, 1n order to use a convenient scale and to construct a graph of a
reasonable size, one must place the origin of the x-axis away from the lower left
corner of the graph paper When you have such agraph, you cannot obtain the
value of b, they intercept, directly from the graph This situation need cause no
difficulty, however, because m (the dope) still can be obtained from the graph
Once obtained, 1t can be used, along with any arbitrarily chosen point on the
line, to solve for the value of b The following problem illustrates this

PROBLEM:

The following data show how the density D of mercury vanes with the Kelvin
temperature T Plot these data From the resulting graph, determine the mathe-
matical equation that shows how D vanes with T

T CK) 263 273 283 293 303 313
D (gml) 13 6201 13 5955 13 5708 13 5462 13 5217 13 4971

SOLUTION.

The graph of these values of D and T 1s shown in Figure 6-3 Note that a greatly
expanded scale 1s needed along the y axis to show in a reasonable way the small
changes in D with temperature also note how far from absolute zero the scale
along the \ axis starts The slope m 1s calculated by taking two convenient points
on the line as shown, then taking the ratio of the two sides of the triangle formed
from these points n the figure it 1s the ratio 0 0550/—22 5 = -0 00244 - m Note
aso that the sign of the slope 1s negarn ¢ as 1t must always be when the Iine slopes
downward from left to nght—that 1s, when v decreases with increasing values of ¢

Because the mathematical equation for this line must be of the form

D-mT+Db

we can take any point on the line (300 and 13 530 for convenience) and use 1t with
the value of m = -0 00244 to solve for the value of b

b-D~mT
= 13530 (-000244X300) - 13 530 + 0 732
-14262

The equation that relates D to T for mercury over this range of temperatures
thus s

D - -0002447 + 14 262

It often 1s desirable to recast datainto a different form before making a graph,
in order to obtain a straight-line graph The data in Table 11-1 can be used to
illustrate this procedure With the data plotted just as they are given in the table
(vapor pressure of water expressed m torr, and the corresponding temperature
in °C), we obtain the graph shown in Figure 6-4
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TABLE 6-1

Temperature and Pressure Data
f P 17 log P
20 175 0003412 1 243
30 318 0 003301 1 502
40 5.3 0 003195 1743
50 25 0 003095 1 966
60 149 4 0 003004 2174
70 2337 0002915 2369
80 3B51 0 002832 2550
0 525 8 0 002755 2721
100 760 0 002681 2881

We know from theoretical principles, however, (and your text may explain
this) that the vapor pressure of a liquid is related to its heat of vaporization
(AH,), which is a physical constant characteristic of the liquid, to the gas con-
stant (R = 1.987 cal/mole deg), and to the Kelvin temperature (T), by the
equation

AH, y 1
2303R  F

logP = — + B (6-6)

From this expression, it follows that a straight-line graph should be obtained if
we lety = log P and x = 1/T; then the equation will be of the form

y=mx+Dhb (6-1)
. . A
with the slope composed of a collection of constants, m = - -~ 2038 and the

intercept, b = B.

PROBLEM:
Using the data of Table t1-1, plot agraph from which you can calculate the heat of
vaporization of water, AH,.

SOLUTION:
Table 6-1 showsthe datagiven in Table 11-1,along with the values oflog P and /T
calculated from the data. If you need help with the logarithms, see pp 13-15. (K =
°C + 273.2)

Figure 6-5 shows the plot of log P against 1/T. The slope of this straight-line
graph is

0.500

- - - 3
= 5.000225 2.22 x 10° deg

m
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Because m= - .
T 2.303R!
/ cal
- _ - _(— 3 - -
AH, = —(m)(2.303)R) (=2.22x 10 deg)(2.303)|\l.987 mole deg)

= +1.02 x 10* cal/mole

If you also want to findS, then choose a simple pressure, such asP = 100 torr (so
that log P = 2.000) and the corresponding value of 1/7 (it turns out to be 0.003075),
and substitute them into the basic equation along with the calculated value of the
slope (-2.22 x 10%, to give:

AH\ 1

s3mr T 7B

2.000 = (-2.22 x 10%(0.003075) + B
B = 2000 + 6.826 = 8.83

logP = —

The general equation showing how the vapor pressure of water varies with tem-
perature thus is

logP = -221—20+ 8.83
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In a plot such as that in Figure 6-5, one can eliminate the extra labor of
converting al the pressure values to the corresponding logarithms by using
semilog graph paper, which has a logarithmic scale in one direction and the
usual linear scale 1n the other Semilog paper ts available in one-cycle, two-
cycle, or three-cycle forms (and so on), with each cycle able to handle a 10-fold
spread of data For example, one-cycle paper can handle datafrom 0 1 to 1 0,
or 1 0to 10 0, or 10*to 10>, and so on Two-cycle paper can handle data from
10~*to 1074, 0r 0 1 to 10, or 10to 1000, and so on Always choose the paper with
the smallest number of cycles that will do the job, 1n order to have the largest
possible graph on the paper The use of this kind of paper 1s illustrated in the
following problem

PROBLEM:
Calculate the heat of vaporization of water, using the data of Table 11-1 in a
semilog plot

SOLUTION:
It still 1s necessary to convert the Celsius temperature values to reciprocal degrees
Kelvin, as n the previous problem, but the pressure values can be used directly,
as shown m Figure 6-6

At this point, take great care in calculating the slope of the line because al
though a logarithmic scale was used, the valies shown aong the ordinate are not
logarithmic values In calculating the slope, therefore, select two convenient
points on the line, but convert the two pressure values selected into their
logarithms before making the calculations For example, in Figure 6-6 when /T x
1031s 2 85, the value of P 1s 323, and log P 1s 2 509 Similarly when I/T x 10°1s
300, P1s 150, and log P 1s 2 176 Thus the slope 1s given by

__2176-2509 _ ,
= 300300 - 0005~ 22 x 10

As before,

AH, = —(m)X2303)R) - —(—2 22 x 10%(2 303)(1 987)
-+1 02 x 10 cal/mole

THE METHOD OF LEAST SQUARES

"Draw a smooth curve that best represents all the points, such acurve may not
necessarily pass through any of the points >’ This 1s the sixth guideline given for
curve construction on p 65. In al of the figures of this chapter, we have as-
sumed that this has indeed been done Nevertheless, curve drawing 1s a rather
subjective process, prone to many abuses, unless some objective rules are
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followed. There is universal acceptance of the "method of least squares" as the
proper way to draw the best-fit line for alinear (straight-line) relationship. The
ready availability of calculators and computers makes it feasible for almost
anyone to use this method easily.

This method takes pairs of experimental points (xq,v4), (X2, ¥2), (x3,¥38), ...,
(x., ¥,) and seeks to find the values of m (the slope) and b (the y intercept) that
best represent the whole collection of pairs of points, referred to in general as
(x;,y), in the linear relationship

y=mx+Db (6-1)

If we substitute each value of x; into this equation we can calculate what we
might expect for the corresponding value of y,—call it (y;)..... For example,

(yl)cal(' =MmMx;+ b (6'7)

(y2)calc = Mxy + b (6'8)
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We could then compare the values of (y)..ic With the corresponding observed
values of y, by taking the difference (d)between them, as follows:

dz = (yz)(alc - y, (6-9)
or d;= (mx, + b) —y, (6-10)

If al of the experimental points lie on the line, then of course (v = y,,» and
the differences (d) al equal zero. However, thisrarely happens. A more typical
situation is shown in Figure 6-7, where there is afair scatter of points, and none
of the differences equals zero.

The principle of least squares assumes that the "best-fit" line is the one for
which the sum of the squares of the differences (d,)is a minimum. Note that this
assumption considers dl experimental error to be associated with v and none to
be associated with v. In finding a best-fit line, therefore, it is important to let x
represent the variable that is known most accurately. The sum of the squares of
the differences, taken for al values of i (from/ = 1 up to and includingi = n) is

sum = 2di= Z(mx,+ b - y)? (6-11)
We expand the righthand side of Equation 6-11 and then treat it by the

methods of calculus, so as to find the values of m and b that yield the smallest
value for the sum, 2d4%. We thus obtain the two relations that we need.
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Slope = m = ) (6-12a)
Z\Xf ~ X
_ nIxXy; — X2y,
nExt — (Zx)° (©-120)
y Intercept = b =y - mx (6-13a)
S T2 (6-13b)
n n

Use of Calculators in the Method of Least Squares

Equations 6-12a and 6-13a show the slope (m) and intercept () in terms more
clearly related to the raw dataand to Figure 6-7, but Equations 6-12b and 6-13b
are in a form that is more ideally suited for use with computers and many
calculators. The "b" equations are related to the "d' equations in the same
way that Equation 5-7 is related to Equation 5-3 for the calculation of standard
deviation (s). Some calculators have built-in programs that require nothing
more than the entry ofx, and y, through the keyboard, followed by pressing the
"least-square” keys. All programmable calculators can be arranged to accom-
plish the same thing. Nonprogrammable calculators must have at least four
storage registers to accumulate each of the different kinds of sums, and then
they must be operated with care. It is likely that in the near future most hand
calculators will have built-in least-squares programs. If at dl possible, you
should always treat your data (to the extent they can be resolved into alinear
form) by the method of least squares. The following problem illustrates the
application of the method.

PROBLEM:

Using the data of the problem on p 67 that relates thermocouple voltages to
temperature, find the equation of the best-fit line using the method of least
squares. Draw a graph that shows the experimental points and the best-fit line.

SOLUTION:

Using your calculator, enter al of the data pairs (25, 0.23), (50, 1.20), and so on,
considering T to be x and V to bey. If your calculator has a built-in program or is
programmable, you will have to know the proper procedure for your brand of
calculator—that is, which keys to press to enter the data pairs, and how to obtain a
display of m and 4. If your calculator doesn't have the af orementioned capability
but does have at least four storage registers, you can use it to accumulate x,, 3x?,
3y, and 3x,y,;, and then use Equations 6-12b and 6-13b to calculate m and b. You
will have to calculate m before 4. Note that in this problem the number of data
pairs (n) is 8. Note also that 2x} is not the same as (2x;)%. Your calculator will show
that m = 0.04074 and b = —0.794, giving the equation for the best-fit line as

V = 0.04074T - 0.794
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Note that the method of least squares will give you values of m and b more
accurate than those you could obtain directly from the graph Also you now have
a simple and unequivocal basis for drawing the best-fit line The easiest approach
1s to locate two points accurately, then draw a line through them For one point
use b, they intercept corresponding to T = 0°C For the other point use some
simple value of T, such as 100°C, which corresponds to V = 4074 - 0794 =
3 280 Drawing the line through these two points, (0, —0 794) and (100, 3 280) wiil
give the graph shown in Figure 6-2

Usually 1t 1s a good 1dea to plot the experimental points first (but not draw a line
that represents them) so that, if there should happen to be areally bad point that
clearly doesn't represent the experiment (due probably to a serious experimental
error), you could omit this point when using the method of least squares You
should still show the bad point on the graph, but with a note that 1t was not included
1n determining the equation of the best fit ine that 1s drawn

Correlation Coefficient

Whenever you get the equation for the best-fit line, or draw 1ts graphical rep-
resentation, there 1s the question of how well the equation represents the data,
or how good the correlation s betweenx andy We can find the answer to this
question asfollows

The choice of which variable s x and whichis y 1s arbitrary but, in the method
of least squares, whichever 1s chosen as y 1s assumed to possess dl of the error,
and x 1s assumed to possess none If the variables were interchanged (that 1s, if x
and y were plotted the other way around), this assumption would be reversed,
and the slope of the line would be given by

slope = m' = E(X’E(‘yf)_(y o y) (6-142)
Then, x intercept = ' = X - m’y (6-15a)
_Ix 3 (6-15b)

n n

If there 1s a perfect correlation between x and y, then the slope of the best-fit
plot of* versusy should bejust the reciprocal of the slope of the best-fit plot of
y versus x, and the product of the slopes (mm’') should equal 1 00000000 The
degree to which this product does not equal unity 1s considered to be the
fraction of the variation in a set of measurements that can be explained by the
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linear dependence of one variable on another; it is called the coefficient of
determination, r2,

r- = mm' (6-16)

The more commonly used term isr itself, which is called the correlation coeffi-
cient:

r = (mm')t (6-17)

Calculators that have built-in least-squares programs, and programmable
calculators that perform the same function, always provide for the simulta-
neous calculation of r, because exactly the same sums are needed for its calcu-
lation as for the calculation ofm and £. For a nonprogrammable calculator (with
at least five storage registers), there would be the same effort to calculate m’ as
to find m; then Equation 6-17 would be used to calculate r.

PROBLEM:
Determine the correlation coefficient r for the best-fit equation obtained in the
problem on p 75 involving thermocouple voltage versus temperature.

SOLUTION:

Work the problem exactly as you did previously, but with the additional knowl-
edge of how to display r with your make of calculator, or with the program you
use. If you use a nonprogrammable calculator with at least five storage registers,
first accumulate 2x;, 2x2, 3y, 2y?, and Zx;y;. Then calculate m with Equation
6-12b, m’ with Equation 6-14b, and finally r with Equation 6-17. The answer will
ber = 0.9999, a very good correlation indeed.

Reliability of Slope and the y Intercept

It is acommon practice to derive some important physical or chemical charac-
teristics from the slope or they intercept of a graph constructed from experi-
mental data points. These data points have, of course, some error associated
with them and, as a consequence, even the "best-fit" line must have some
uncertainty associated with it. Just how good is a value derived from the sope
and intercept of a best-fit line?

In the same way that one uses the variance and standard deviation to de-
scribe the scatter of points around their average, one can also use the variance
and standard deviation to describe the scatter, in the vertical (y) direction, of
the points about the best-fit line. Statisticians have shown that the variance is
given by
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502 = [ 2y — "n—_rr;"Z(xi i‘)“]' (6-182)
_ [n - 1]*(s2 — mis2)h (6-18b)
n-—2 v ¥

where s2 and s2 are the variances of x and y, as calculated by Equation 5-2 in the
last chapter. The variances,,, is called the standard error of estimate.

Then, in the same way that one talks about a certain (percentage) confidence
interval for a given series of measurements (see pp 54-57), one can aso tak
about the (percentage) confidence intervals for the slope and y intercept of a
best-fit line. They are related to the standard error of estimate s,,, and, for the
desired level of confidence, the t value that corresponds to one less than the
number of data pairs, as follows. For the slope,

the confidence interval ism +— \';% 1 (6-19)

For they intercept,

: : , ri 214
the confidence interval isb * s, - +—— (6-20)
Ln o s3]

PROBLEM:
Find the 95% confidence interval of the slope and intercept of the best-fit equa-

tion obtained in the problem on p 75 involving thermocouple voltage versus
temperature.

SOLUTION:

You will need to use Equations 6-18b, 6-19, and 6-20, as well as Equation 5-7 from
the last chapter. You will also need the values of m = 0.04074 and b = 0.7936
already obtained. Also, n = 8 and v = 112.50. With Equation 5-7 youfindthats,=
61.23724 and s, = 2.49523. Substitution into Equation 6-18b gives

rg — 11
Sue = g [(2.49523) - (0.04074)%(61.23724)*]}
= 0.038097

From Table 5-1, wefind thatt = 2.447 for n = 7 (0ne less than the number of data
pairs) at the 95% confidence level. Then, using Equations 6-19 and 6-20, we find

(2.447)(0.038097)

. : . _ .
95% confidence interval of the slope = 0.04074 + 61.23724)7)h

— 0.04074 + 0.000576 LIS
deg
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95% confidence interval of the v intercept

— 0794+ (2 447,0 038097)[% ; M]

(7)61 23724)-
= -07% + 0 0727 volts

Note Problems 3 through 7 and 10 through 14 are, 1n part, given at two levels of sophisti-
cation and expectation The best" answers involve doing the part marked with an asterisk
(*) instead of the immediately preceding part The parts with an * involve the use of the
method of least squares, correlation coefficients, and confidence intervals for the slopes and
intercepts, the preceding parts do not

prOBLEMS A

1 Construct graphs for each of the following functions, plotting q as ordinate
and p as abscissa

(& q=6p (da=16 +5
(b) g =6p + 10 ©® g=50x10"%
(©) ap = 20

2 Rearrange those equations in Problem 1 that do not give a straight-line rela-
tionship in such away that, when plotted in adifferent fashion, they will yield
a straight Iine Plot each of these new equations, showing which function
extends aong each axis

3 (8 Plot (as points) the solubility of Pb (NO ), in water as afunction of tem-
perature, the solubility S1s given in g per 100 g of H,0 The experimental
data are the following

t (°O) 200 400 60 0 800 100 0
5 (g/100 g H,0) 56 9 74 5 934 114 1 1313

(b) Draw a graph (add a Line) on the plot made m (&), and determine the
mathematical equation for 5 as afunction of t
*(c) (1) Using the method of least squares, find the equation of the line that best
fitsthegivendata (i) Find the correlation coefficient and the 95 confi-
dence intervals for both the slope and the\ intercept of the best-fit equa-
tion (ur) On the plot made in (@), draw the line that corresponds to the
best-fit equation

4 In colorimetric analysis, it 1s customary to use the fraction of light absorbed
by a given dissolved substance as a measure of the concentration of the sub
stance present in solution, monochromatic light must be used, and the length
of the absorbing light path must be known or must always remain the same
The incident light intensity 1s /,, and the transmitted light intensity 1s /, the
fraction of light transmitted 1s 1/1,

(a) The following data are obtained for the absorption of light by MnO , 1onat a
wavelength of 525 nm 1n acell with a | 00 cm light path Construct agraph
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of1/1, against C (as abscissa), where C 1s the concentration expressed in mg
of Mn per 100 ml of solution

C 100 200 300 400
11, 0418 0 149 0 058 0026

(b) Replot the given data on semilog paper, again plotting concentration along
the abscissa, but plotting 7,/1 aong the ordinate

(c) From the graph made n (b), find the mathematical equation for the rela-
tionship between I,/ and C

*(d) () Using the method of least squares, find the equation of the best-fit line

for the data as plotted i (b) above («) Find the correlation coefficient
and the 95% confidence interval for the slope of the best fit equa-
tion  (u) On the plot made in (b), draw the line that corresponds to the
best-fit equation.

When radioactive isotopes disintegrate, they obey a rate law that may be
expressed as log N = -kt + K, where t 1s time, and N 1s the number of
radioactive atoms (or something proportional to it) present at time + A com-
mon way to describe the number of radioactive atoms present in a given
sample 1s 1n terms of the number of disintegrations observed per minute on a
Geiger counter (this 1s referred to as "the number of counts per minute,” or
simply as cpm)

(a) The following cpm are obtained for a sample of an unknown isotope at
10-minute intervals (beginning witht = 0) 10,000 8166, 7583, 6464, 5381,
5023, 4466, 3622, 2981, 2690, 2239 2141, 1775, 1603, 1348, 1114, 1048 Plot
these data, using semilog graph paper

(b) Construct a graph on the plot made in part (a), and from this graph evalu-
ate the constants k and K to give the equation of the rate law

*(€) (2) Using the method of least squares, find the rate-law equation of the
best-fit Line for the data as plotted in (a) above (u) Find the correlation
coefficient and the 95% confidence intervals for both the sope and they
intercept of the best-fit equation  (:z) On the plot made in (a), draw the
line that corresponds to the best-fit equation

(d) What 1s the physical significance ot K °

When the rates of chemical reaction are studied, it 1s common to determine
the "rate constant" k, which s characteristic of a given reaction at a given
temperature Still further information can be obtained by determining the
value of k at several different temperatures, because these values of A are
related to the Kelvin temperature (T) at which they were measured according
to the equation

logk = — X=+Q

23R T
In this equation AH, 1s the so-called "energy of activation," Q 1s a constant

characteristic of the reaction, and R 1s the gas constant of 1 987 cal mole ' K '
(8 The following data are obtained for the reaction
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1
N0, = 2NO, + -0,

t (°C) 25.0 35.0 45.0 55.0 65.0
k 346 x 10> 1.35x 10% 498 x 10" 1.50 x 10" 4.87 x 107

Plot these data on semilog graph paper.
(b) Construct agraph on the plot madein (&), and determine the mathematical
equation for the relationship between k and T.

*(c) (i) Using the method of least squares, find the equation of the best-fit line
for the data as plotted in (a) above. (i) Find the correlation coefficient
and the 95% confidence intervals for both the slope and they intercept of
the best-fit equation. (HI) On the plot made in (a), draw the line that
corresponds to the best-fit equation.

(d) Calculate the value of the activation energy for this reaction.
(€) What is the physical significance of the constant O?

7. Regardless of how fast a chemical reaction takes place, it usually reaches an
equilibrium position at which there appears to be no further change, because
the reactants are being reformed from the products at the same rate at which
they are reacting to form the products. This position of equilibrium commonly
is characterized at a given temperature by a constant K., called the equilib-
rium constant (see Chapter 16). The equilibrium constant commonly is mea-
sured at several different temperatures for a given reaction, because these
values of K, are related to the Kelvin temperature (T) at which they are
measured; the relationship is

AH
lOgK(.—‘—mX 'I—,+Z

In this equation, AHisthe so-called "energy (or enthalpy) of reaction,” Z is a
constant characteristic of the reaction, and R is the ideal gas constant, 1.987
cal mole™' K"

(8 The following data are obtained for the reaction

H, + I,— 2 HI

t O 340 360 380 400 420 440 460
K. 70.8 6.0 61.9 51.7 53.7 %0.5 46.8

Plot these data on semilog graph paper.
(b) Construct agraph on the plot made in (a), and determine the mathematical
equation for the relationship between K. and T.

*(c) (i) Using the method of least squares, find the equation of the best-fit
line for the data as plotted in (&) above. (ii) Find the correlation coef-
ficient and the 95% confidence intervals for both the slope and the y
intercept of the best-fit equation. (iii) On the plot made in (&), draw the
line that corresponds to the best-fit equation.
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(d) Calculate the value of the energy of the reaction for this reaction
(e) What 1s the physical significance of the constant 7°

PROBLEMS B

8 Construct graphs for each of the following functions, plotting m as ordinate
and n as abscissa

@ m= 25w @ m=dn - 1)
(b) m- 20 - 4n (e m- 4e °-
() mn = 1/4

9 Rearrange those equations i Problem 8 that do not give a straight-line rela-
tionship tn such away that, when plotted in adifferent fashion, they will yield
a straight Iine Plot each of these new eguations showing which function
extends along each axis
10 (@) Plot the solubility of K,SO, in water as a function of temperature the
solubility S1s given as g per 100 g of H,O The experimental data are the
following

t(°C) 200 400 600 800 1000
5 98 142 183 216 259

(b) Draw a graph on the plot made in (a), and determine the mathematical
equation for S as a function of t
*(c) (/) Using the method of least squares, find the equation of the line that best
fits the givendata (n) Find the correlation coefficient and the 95% confi-
dence intervals for both slope and the \ intercept of the best-fit equa-
tion (//() On the plot made in (a), draw a hine that corresponds to the
best-fit equation

11 (a) The nature of colorimetric analysis 1s described in Problem 4 With this n
mind, use the following data (obtained for the absorption of light by CrO,
1ons at a wavelength of 3660 A n a cell with a 1 00 cm light path) to
construct agraph of/1, against C (as abscissa), where C 1s the concentra-
tion of CrO, m moles of CrO, per liter of solution

C 080x 10 120x 10 ¢ 160x 10+ 200x 10 ¢
p 0410 0276 0174 0111

(b) Replot the given data on semtlog paper, again plotting concentration along
the abscissa, but plotting 7,/ aong the ordmate
(c) From the graph made in (b), find the mathematical equation for the rela-
tionship between 1,/1 and C
*(d) (() Usingthe method of least squares, find the equation of the best-fit line
for the data as plotted in (b) above («) Find the correlation coefficient
and the 95% confidence tervals for both the slope and the v intercept of
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the best-fit equation. (iii) On the plot made in (b), draw the line that
corresponds to the best-fit equation.

12. (a) The nature of the radioactive disintegration of unstable isotopes is de-
scribed in Problem 5. Bearing this in mind, use the following data (ob-
tained for a given sample of an unknown radioactive isotope, and taken at
five-minute intervals, beginning with ¢ = 0): 4500; 3703; 2895; 2304; 1507;
1198; 970; 752; 603; 496; 400; 309; 250; 199. Plot these data, using semilog
graph paper.

(b) Construct agraph on the plot made in (a), and from this graph evaluate the
constants k and K to give the equation of the rate law.

*(c) (i) Using the method of least squares, find the rate-law equation of the
best-fit line for the data as plotted in (a) above. (i) Find the correlation
coefficient and the 95% confidence intervals for both the slope and they
intercept of the best-fit equation. (it7)On the plot made in (a), draw the
line that corresponds to the best-fit equation.

(d) What is the physical significance of K?

13. Pertinent statements about rate constants for chemical reactions are given in
Problem 6. Keeping these statements in mind, use the following data obtained
for the reaction

CO + NO, — CO, + NO

1 (°C) 267 319 365 402 454
k 0. 00160 0.0210 0.120 0.630 270

(a) Plot these data on semilog graph paper.
fb) Construct agraph on the plot madein (a), and determine the mathematical
equation for the relationship between k and T.

*(c) (i) Using the method of least squares, find the equation of the best-fit tine
for the data as plotted in (a) above. (i) Find the correlation coefficient
and the 95% confidence intervals for both the slope and the v intercept of
the best-fit equation. (ii;) On the plot made in (a), draw the line that
corresponds to the best-fit equation.

(d) Calculate the value of the activation energy for this reaction.
(e) What isthe physical significance of the constant O ?

14. () Some fundamental statements are made about chemical equilibria
in Problem 7. Keeping these statements in mind, use the following data
for the reaction

H, + CO, —» CO + H,0

t (°C) 600 700 800 900 1000
K. 0.39 0.64 0.95 1.30 176

Plot these data on semilog graph paper.
(b) Construct agraph on the plot made in (a), and determine the mathematical
equation for the relationship between K, and 7.
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*(c) (i) Using the method of least squares, find the equation of the best-fit line
for the data as plotted in (a) above. (ii) Find the correlation coefficient
and the 95% confidence intervals for both the slope and they intercept of
the best-fit equation. (i) On the plot made in (a), draw the line that
corresponds to the best-fit equation.

(d) Calculate the value of the "energy of reaction" for this reaction.
(e) What is the physical significance of the constant Z?
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Density and Buoyancy

Either directly or indirectly, the concept of density plays an important role in a
myriad of scientific operations: construction of equipment, preparation of solu-
tions, determination of volumes, accurate weighings, measuring buoyancy of
objects, studying properties of gases, and so on. Density is defined as the mass
per unit volume, or

mass

density = volume

(7-1)

In scientific work, the densities of solids and liquids usually are expressed in
grams per cubic centimeter or grams per milliliter, whereas the densities of
gases usually are expressed in grams per liter. In engineering work, densities
customarily are expressed in pounds per cubic foot.

DENSITY OF A LIQUID

The simplest way to determine the density of a liquid is to weigh an empty
vessel of known volume and then weigh it again when it is filled with the liquid.
An approximate value may be determined with a simple graduated cylinder
weighed on a triple-beam balance. Only a crude value can be obtained because
the balance can be read only to the nearest 0.1 g and the cylinder only to the
nearest 0.1 ml.
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PROBLEM:

A clean dry 10-ml graduated cylinder weighs 37.6 g empty; it weighs 53.2 g when
filled to the 7.4 ml mark with an unknown liquid. Calculate the density of the
liquid.

SOLUTION:

The weight of the liquid is 5329 - 376 g = 156 g.

The volume of the liquid is 7.4 ml.

156 g _ o

The density of the liquid =——— - 2 mi

A more accurate value, using the same method, involves a volumetric flask
as the vessel and an analytical balance for the weighings. The volumetric flask
has a narrow neck that makes accurate measurement easy; liquid is added until
the bottom of the curved liquid surface (the meniscus) appears to just touch the
mark that is etched on the neck (Figure 7-1).

PROBLEM:

A clean dry volumetric flask, known to contain exactly 10.000 ml when it is
properly filled to the mark, weighs 12.754 g when empty. When filled to the mark
with aliquid at 23°C, it weighs 33.671 g. Calculate the density of the liquid.

SOLUTION:

33, 67] g— 12.754 g g
——=.= 2, at 23°C
10000m| 2092 . at 23

Density =




87

TABLE 7-1

Density of Water at Various

Temperatures

Densi ty Densi ty

tecy  (g/n) fecy  (gn)
15 09991 23 09975
16 09989 24 0 9973
17 09988 25 09970
18 09986 26 09968
19 09984 27 0 9965
20 09982 28 09962
21 09980 29 09959
22 09978 30 09956

The previous problem draws attention to an important property that must be
taken into account for accurate measurements. Almost every material expands
with an increase in temperature. In the last problem, if the measurement had
been made at 25°C (instead of 23°C), the liquid would have expanded, and a
smaller amount (weight) would have been required to adjust the meniscus to the
mark. Theflask, being asolid, would have undergone anegligible expansion, so
its volume remains unchanged. As aresult, the measured liquid density would
be smaller at the higher temperature. For this reason, it is always necessary to
report the temperature at which an accurate density measurement is made. The
most common liquid, water, has had its density measured with great accuracy
over itsentire liquid range. Table 7-1 gives afew values for the density of water
near room temperature.

Once the density of aliquid, such as water, is known with great accuracy as a
function of temperature, it provides a very useful means of determining the
accurate volumes of vessels. Volumetric flasks are purchased with a nominal
(approximate) value of the volume printed on their walls. Theaccurate volume
can be determined by calibration with water, as illustrated in the next problem.
Once calibrated, the flask can be used over and over again for other accurate
measurements.

PROBLEM:

A 25 ml volumetric flask is calibrated by weighing it filled to the mark with distilled
water at 26°C; it weighs 48.4636 g. When empty and dry, theflask weighs 23.5671
g. Assume that the weights have been corrected for buoyancy (see pp 92-95).
Determine the accurate volume of the flask.

SOLUTION:

mass of water

Volume of flask = volume of water = density of water a 26°C
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Look up the density of water at 26°C in Table 7-1; it is 0.9968 g/ml. Then substi-

tute, to give
Volume = 484636 g - 235671 g
0.9968 £
ml
= 24976 ml

DENSITY OF A GAS

The density of gases can be determined experimentally in the same way as for
liquids, but the values so obtained are not particularly reliable because the total
weight of gas in a flask of a reasonable size for weighing is very small—quite
likely less than 100 mg. Furthermore, avery specia flask would have to be used
that would be absolutely leakproof and capable either of being flushed out with
the gas to be studied, or of being evacuated before filling. Moreover, provision
would have to be made for measuring the pressure of the gas in the flask as well
as its temperature.

If the molecular weight of agas is known, it is possible to calculate its density
for a given temperature and pressure using principles described in Chapter 11.
We discuss gas densities in that chapter.

DENSITY OF A SOLID

If a solid has a regular geometric form, the density may be computed from its
weight and volume.

PROBLEM:
A cylindrical rod weighing 45.0 g is 2.00 cm in diameter and 15.0 cm in length.
Find the density.

SOLUTION:

Mass = 45.0 g.

Volume = zr3L = (3.14)(1.00 cm)%(15.0 cm) = 47.1 ¢m’.
. mass 450 o o

Density = _

, = 0.955 giem’ or 0.955 —-

volume - 47.1 ¢cm [

When a solid is irregular in shape, it seldom is convenient or possible to find
its volume by measurement of its dimensions. A convenient procedure is to
immerse the object in a liquid, and then to determine its volume by measuring
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the volume of the liquid it displaces, taking care that air bubbles don't cling to
the solid's surface and also displace liquid. The method will work only if the
solid is insoluble in the liquid used. An approximate value, using a graduated
cylinder, may be found as follows.

PROBLEM:

A 5.7 g sample of metal pellets is put into a graduated cylinder that contains 5.0 ml
of water. After the pellets are added, the water level stands at 7.7 ml. Find the
density of the pellets.

SOLUTION:

Mass of pellets = 5.7 g.

Volume of pellets = volume of water displaced — 7.7 — 5.0 = 2.7 ml.
mass 57¢ 2

Density of pellets = volume = 27 mi - 2.1 ml”

A variation of the previous method that gives much more accurate values
utilizes a volumetric flask and an analytical balance, as illustrated in the follow-
ingproblem.

PROBLEM:

A volumetric flask was weighed empty, then filled with water to the mark and
reweighed. After the flask was emptied and dried, some solid sample was added
and the flask was weighed again. Finally, water was added to the sample in the
flask until the meniscus was again at the mark, and the flask was weighed once
again. The following data were obtained with this method (assume the weights to
be corrected for buoyancy as on pp 92-95). Calculate the density of the solid.

A. Weight of empty flask = 24.3251 g.

B. Weight of flask filled to mark with water at 23°C = 74.2613 g.

C. Weight of flask + sample = 55.7884 g.

D. Weight of flask + sample + water (at 23°C) to the mark = 101.9931 g

50LUTION:
fo find the density of the sample, we must calculate its mass and its volume.

Mass of sample = 55.7884 g - 24.3251 g = 31.4633 g

Tofindthe volume of the sample, we first find the weight of the water displaced by
the sample, then convert this weight to volume using the density of water at 23°C

from Table 7-1. The volume of water displaced isjust equal to the volume of the
sample.
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Weight of water in flask (with no sample) = 74.2613 g - 24.3251 g

49.9362 ¢

101.9931 g - 55.7884 ¢

46.2047 g

49.9362 g - 46.2047 ¢
37315 g

7315 o

Weight of water in flask (with sample)

Weight of water displaced by sample

Volume of sample = volume of water displaced = —

0.9975 —
m!

3.7409 ml

. 31 4633
Density of sample = # 8.4106 _rgr—ﬁ

Five significant figures are justified on the basis of the one set of data given, but
repeated measurements would show that you would be unable to reproducibly
adjust the water meniscus with four-place accuracy, so a density value of 8.411
g/ml would be more reasonable.

BUOYANCY

Archimedes' Principle

There is still another method by which the density of insoluble solids can be
determined. It is based on an ancient principle known as Archimedes' principle:
when an object is suspended in a fluid, it APPEARS to lose weight equal to the
weight ofthe fluid displaced. We say that the object is "buoyed up," and that the
"buoyancy" is equal to the apparent weight loss. In equation form, Ar-
chimedes' principle could be stated as

(wt of object in air) - (apparent wt of object in fluid) = (wt of fluid displaced)

Another principle, which we might cal the "common sense principle" for
immersed objects, is one we've used in the last two problems:

(the volume of the object) = (the volume of fluid displaced)

The application of Archimedes' principle to the determination of densities of
liquids and solids is illustrated in the next two problems.
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(a) (b)

FIGURE 7-2

(a) Metal object weighs 25.0 g in air. (b) Same metal object appears
to weigh only 15.0 g when suspended in water.

PROBLEM:
A metal object suspended by a very fine wire from the arm of a balance weighs

25.0 g in air, but when it is suspended in water it appears to weigh only 150 g
(Figure 7-2). Find the density of the metal.

SOLUTION:
Weight of metal object in air = 25.0 g

Weight of metal object in water = 15.0 g
Buoyancy = apparent weight loss = 100 g
By Archimedes' principle,
weight of water displaced = apparent weight loss = 10.0 g
By the common sense principle,

volume of object = volume of water displaced

_ wt of water displaced
~ density of water

10.0g

100 =
ml

= 100 mi

We use 1.00 g/ml for the density of water here because the weighings were done
only to the nearest 0.1 g. More accurate weighings would havejustified the use of
Table 7-1.

. . _ Mmass _ 25.0g 8
Density of metal object = volume ~ 10.0mi ~ 2.50 p_—r
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PROBLEM:

For routine liquid-density determinations, a glass bob fastened to afine platinum
wire 1s available for hanging on the end of an analytical balance arm It can easily
be weighed while suspended in aliquid The glass bob has a density of 2 356 g/ml,
and it weighs 11 780 g in air When suspended n aliquid of unknown density, the
bob appears to weigh only 7 530 g Calculate the density of the liquid

SOLUTION:

11 780 ¢
Volume of the bob = EW

Apparent wt lossof bob = 11 780 g- 7530 g =4250¢g

= 5000 ml

By Archimedes' principle,

wt of liquid displaced = apparent wt loss = 4 250 g
By the common sense principle,

volume of liquid displaced = volume of bob = 5 000 ml

S 4 250
mass Q=0850_g_

Density of iqud = volume — 5 000 ml ml

Buoyancy Correction for Weighing in Air

Aur too 1s afluid that exerts a small buoyant effect on any object it surrounds
At ordinary conditions the density of airis 1 2 x 10~*g/ml, and in very accurate
weighings 1t 1s necessary to take into account the buoyant effect of the dis-
placed arr, that 1s, we must calculate what the weight of an object would have
been had the weighing been done in vacuo where there would be no buoyant
effect. We can make this correction, which involves both the object and the
weights, as follows (see Figure 7-3)

When a two-pan balance 1s "balanced,” the total torque on the balance 1s
zero, and you can set the clockwise torque equal to the counterclockwise
torque because the lever principle,

FIXLI:F2XL2 (7'2)
states that at equilibrium, force #1 (F,) times its distance (L )from the fulcrum
1s exactly equal to force #2 (Fytimes its distance (L ) from the fulcrum. F, and

F, are the products of the acceleration of gravity (g) and the effective masses
(M, and M, at each pan, so that Equation 7-2 becomes

MgL, = MxgL, (7-3)
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(a) (b) (c)

FIGURE 7-3

(@) A sealed flask whose volume is 100.0 ml weighs 100.0 g when weighed in air. Both the
weights (volume = 12.5 ml) and the flask are buoyed up by the air. (b) When the air is
pumped out, a greater buoyant support is withdrawn from the flask than from the weights,
because the flask had previously displaced a larger volume of air; the position of balance is
therefore lost and the left pan drops down. (c) The position of balance in the vacuum is
restored by adding 0.105 g to the right pan. This increase in weight is equal to the difference
between the two buoyant forces due to the air in part a. The true weight of the flask is 100.105
g; the buoyancy correction factor is 1.001050.

For atwo-pan balance, the lever arms are equal (L, = L,), the pan weights are
equal, and the effect of gravity cancels, so that "at balance" the situation
simply reduces to the fact that the effective masses of the object (0) and the
weights (w) areequal. That is,

(Mo)eff = (Mw)eff (7'4)

In each case, the effective mass is the true mass (M ,or M, corresponding to
weighing in vacuo) minus the buoyance (B,for object, and B, for weights) due
to the mass of the air displaced. The true mass of the weights (M) is aways
known because thisinformation is supplied by the manufacturer. Equation 7-4
can be rewritten as

M, - B, = M, ~ B, (7-5)

The buoyancies (the masses of the air displaced) are given by the products of
the respective volumes and the density of air (d,):

/
B, = Voda = %> da (7-6)

\ Uy
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B, = V.d, = (Aj‘”) d, (7-7)

We can substitute Equations 7-6 and 7-7 into Equation 7-5 and solve for M,, the
true mass of the object, to obtain

A useful approximation can be made by expressing

d,\ ™!
(l*z)

as the series

and then, after multiplying by

dy
(1-2)
neglecting al those terms that possessd?, d3, di, and so on. This approximation
isjustified because d, is so small (about 1.5 x 10~* x d,,) that these terms will

be negligible compared to al the others. This approximation yields the simple
formula

M0=M“[1+da/(;,‘—0—j—“)] (7-9)

This same expression can be derived for single-pan balances that use the
method of substitution of weights. The fact that the lever arms are unequal
and that there is a constant load on the balance does not alter the final
expression.

The factor

[1+a(z-a)]

in Equation 7-9 is called thebuoyancy correctionfactor. It isanumber—involving
only the densities of air, the weights, and the object—by which you multiply the
sum of the observed weights (M),, in order to get the true weight of the object
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(M,). You can see that, if the object and the weights had the same density, they
would have the same volume; each would be buoyed by the same amount, and the
correction factor would be 1.0000000 (that is, there would be no correction). If
there is a big difference in densities of weights and object (as there is in the case

of water as the object), then the correction is significant, asillustrated in the fol-
lowing problem.

PROBLEM:

A sample of water at 20°C is weighed in air with brass weights and found to weigh
99.8365 g. Calculate the true mass of the water. The density of brassis 8.0 g/ml and
the density of air is 1.2 x 10~ g/ml.

SOLUTION:
/1 \
The buoyancy correction factor = 1 + 4, | — --,—1
yancy l\ dy 1fy 7
i —1+(]2><10*3)(1———1——)
1 - ’ 1.0 8.0
= 1.001050

The true weight = M, = M,, (1.001050)
= (99.8365 g)(1.001050) = 99.9413 g

F There is no point in using the very accurate density for water from Table 7-1
because the other densities are given only to two significant figures; furthermore,
the slight correction has aimost no effect on the value of the factor or the true
weight. If we used d, = 0.9982 g/ml, the buoyancy factor would be 1.001052 and
the true weight would be 99.9415 g. The error is only two parts in a million.

A huge fraction of all weighing is done by difference—that is, the weight of
the object is found as the difference between the weight of the empty container
and the weight of the container with the object. There is no point in making a
buoyancy correction to both weighings, because the error in container weight is
the same both times and cancels out when one weight is subtracted from the
other. A buoyancy correction need be applied only to the ‘*difference’—that is,
only to the object itself.

If the object being weighed is small, and of some significant density, the need
for buoyancy correction vanishes. The more nearly d, islike d,, the less impor-
tant is buoyancy. For example, if you wanted to know the true weight of 0.5000
g AgCl weighed in air with brass weights (d,, = 8.0 g/ml), you would look up the
density of AgCl in a handbook (it is 5.56 g/m!) and calculate the true value as

true wt of AgCl = (0.5000 @) [1 + (1.2 x 1079 (5%_ ﬁ)]

= 0.500033 g
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In reality there is no correction, because you could weigh only to four decimals
in the first place; the true weight is the observed weight of 0.5000 g.

Finally, if the object has a greater density than the weights (4, > d.), the
buoyancy correction factor will be less than 1.000000, because the smaller
volume of the object displaces a smaller mass of air than the weights. Platinum,
gold, and lead are metals with appreciably greater density than brass.

Calibration of Volumetric Flasks

The accurate calibration of volumetric glassware must also take buoyancy into
account. For example, in the previous problem, if the observed weight of water
is that needed to fill a 100 ml volumetric flask exactly to the mark, we could
easily calculate the true volume of the volumetric flask just as we did on p 86:

trye mass 99.9415 ¢
truevoldme== —zc— (2 - —%2 = -2100.12mi
denisity of water at 20°C R Y r%ﬁ

If we had not made a buoyancy correction, we would have thought the volume
Q0 RAS o

to be = 100.02 ml; the error is 0.1%. Because the true volume of
0.9982 g/ml

the flask is 100.12 ml, and the nomina volume is 100.00 ml, we would say

that the calibration correction is +0.12 ml; that is, we must add 0.12 ml to the

nominal value to get the true volume.

PROBLEMS A

Show units in all calculations.

1. The density of mercury is 13.54 g/ml. How many milliliters of mercury are
needed to weigh 454 g?

2. The density of a sulfuric acid solution is 1.540 g/ml. How much does 1 liter of
this solution weigh?

3. If 17.5 g of brass filings (density = 8.0 g/ml) are put into adry 10 ml graduated
cylinder, what volume of water is needed to complete the filling of the cylin-
der to the 10 ml mark?

4. A ring weighing 7.3256 g in air weighs 6.9465 g when suspended in water at
24°C. Is the ring made of gold (density = 19.3 g/ml) or brass (density = 8.0
g/ml)?

5. Find the weight of 1 cu ft of air at 2PC, assuming a density of 0.00120 g/ml at
this temperature.
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6. A glass bulb with a stopcock weighs 54.9762 g when evacuated, and 54.9845 g
when filled with agas at 25°C. The bulb will hold 50.0 ml of water. What is the
density of the gas at 25°C?

7. Mercury (density = 1354 g/ml) is sold by the "flask," which holds 76 1b of
mercury. If the cost is $1130 per flask, how much does 1 ml of mercury cost?

8. (@) A column of mercury (density = 13.54 g/ml) 730 mm high in atube of 8
mm inside diameter is needed to balance a gas pressure. What weight of
mercury is in the tube?

(b) If the same gas pressure were balanced by mercury in atube of 16 mm
inside diameter, what weight of mercury would be needed?

9. In norma whole blood there are about 54 x 10° red cells per milliliter. The
volume of ared cell is about 90 um®, and the density of ared cell is 1.096 g/ml.
How many pints of whole blood would we need in order to collect 8 oz
(avoirdupois) of red cells?

10. How far (in centimeters) does a 1 cm cube of wood stick out of the water if its
density is 0.85 g/ml?

11. A piece of Invar (density = 8.00 g/ml) weighs 15.4726 g in air and 13.9213 g
when suspended in liquid nitrogen at a temperature of - 196°C. What is the
density of liquid nitrogen at that temperature? (Invar has a very small coeffi-
cient of thermal expansion, and its change in density with temperature may be
neglected in this problem.)

12. The weight of a metal sample is measured by finding the increase in weight of
a volumetric flask when the metal sample is placed in it. The volume of the
metal sample is measured by finding how much less water the volumetric flask
holds when it contains the metal sample. Compute the density of the metal
sample from the following data, assuming that the density of water is 1.000

g/ml.
Weight of empty flask = 26.735 g
Weight of flask + sample = 47.806 g
Weight of flask + sample + water = 65.408 g
Weight of flask + water (no sample) = 50.987 g

13. (a) Repeat the calculations of Problem 12, using an accurate density value for
water (Table 7-1) and assuming the measurements were made at 27°C.
(b) Inwhich decimal place doesit make a significant difference if the accurate
density for water is used instead of 1 g/ml?

14. A chemical is soluble in water but insoluble in benzene. As a conseguence,
benzene may be used to determine its density. The density of benzene is 0.879
g/ml at 20°C. From the following data (obtained as in Problem 12), compute
the density of the sample.
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Weight of empty flask = 31 862 g
Weight of flask + sample = 56 986 g
75 086 g
2175 ¢

Weight of flask + sample + benzene to fill

Weight of flask + benzene (without sample)

A sample of benzene (D = 088 g/ml) weighs 25 3728 g in air with brass
weights What 1s the weight in vacuo®

A platinum crucible (D = 21 5 g/ml) weighs 56 3724 g in air with brass
weights What 1s the weight in \ acuo

A brass sample weighs 16 3428 g in air with brass weights What 1s the weight
n vacua”

The density of water at 25°C 1s 0 9970 g/ml What volume 1s occupied by
1 0000 g of water weighed in air with brass weights?

A chemical of density 2 50 g/ml 1s weighed in air with brass weights The
observed weight 1s 0 2547 g Show by calculation that 1t 1s not necessary to
make a correction of the weight tovacMO ifthe weighing 1s reliable only to the
nearest 0 2 mg

What weight of water at 25°C, weighed in air with brass weights, should be
delivered by a 25 00 ml pipet if 1t 1s accurately graduated?

A spherical balloon 100 ft in diameter 1s filled with a gas having a density
one-fifth that of air The density of air 1s 1 20 g/liter How many pounds,
including 1ts own weight, can the balloon hft” (The Iift 1s the difference be-
tween the weight of the gas and that of an equal volume of air )

PROBLEMS B

22

23

24

25

26

27

The density of a sodium hydroxide solution 1s 1 1589 g/ml How much does 1
liter of this solution weigh?

The density of carbon tetrachlonde 1s 1 595 g/ml How many nulliliters of
carbon tetrachlonde are needed to give 500 0 g?

The density of benzene 1s 0 879 g/ml How many grams of benzene will be
needed to fill a 25 ml graduated cyhnder”

A glass bulb with a stopcock weighs 66 3915 g evacuated, and 66 6539 g when
filled with xenon gas at 25°C The bulb holds 50 0 ml of water What 1s the
density of xenon at 25°C”

If 20 g of magnalium lathe turnings of density 2 50 g/ml are put into a 25 ml
graduated cylinder, what volume of water will be needed to complete the
filling of the cylinder to the 25 ml mark?”

What 1s the weight (1n pounds) of 1 cu ft of aluminum (density = 2 70 g/ml)?
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28. The density of Dowmetal, a magnesium alloy, is 1.78 g/ml. Find the weight (in
grams) of arod i inch in diameter and 2 ft long.

29. Neptunium has adensity of 17.7 g/ml. What would be the radius of a sphere of
neptunium that weighed 500 g?

30. Gallium (density = 3.01 g/ml) may be purchased at the rate of $6.90 per gram.
How much does 1 cu ft of gallium cost?

31. When 235 g of uranium-235 disintegrates by nuclear fission, 0.205 g is con-
verted into 4.4 x 10'* calories (4.4 million million calories!) of energy. What
volume of uranium is converted to energy if its density is 18.9 g/ml?

32. (a) Find agenera factor by which pounds per cubic foot could be multiplied
to convert to density in grams per milliliter.
(b) Find a factor to convert grams per milliliter to pounds per cubic foot.

33. A meta earring weighs 2.6321 g when suspended in air. When immersed in
water at 22°C, it weighs 2.3802 g. What 1s the density of the earring?

34. A thousandth of a milliliter is called a lambda (X). A certain biochemical
procedure calls for the addition of 5 X of a2.00% solution of sodium chloride
(density = 1.012 g/ml). How many milligrams of sodium chloride will be added
from the 5 X pipet?

35. The weight of a metal sample is measured by finding the increase in weight of
a volumetric flask when the metal sample is placed in it. The volume of the
metal sample is measured by finding how much less water the volumetric flask
holds when it contains the metal sample. Compute the density of the metal
sample from the following data, assuming that the density of the water is 1.000

g/ml.
Weight of empty flask = 23.482 g
Weight of flask + sample = 40.375 g
Weight of flask + sample + water = 63.395 g
Weight of flask + water (without sample) = 48.008 g

36. (a) Repeat the calculations of Problem 35, using an exact density value for
water (refer to Table 7-1) and assuming a temperature of 68°F.
(b) In which decimal place does it make a significant difference if the exact
density for water is used instead of the approximate value of 1 g/ml?

37. A chemical is soluble in water but insoluble in kerosene. As a consequence,
kerosene may be used to determine its density. The density of kerosene is
0.735 g/ml at 22°C. From the following data (obtained as in Problem 35),
compute the density of the sample.

Weight of empty flask = 28.176 g

Weight of flask + sample = 40.247 g

Weight of flask + sample + kerosene to fill = 51.805 g
Weight of flask + kerosene (without sample) = 45.792 g
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A sample of liquid of density 0 85 g/ml weighs 32 3524 g in air with brass
weights What 1s the weight in vacuo?

A platinum dish (D = 21 5 g/ml) weighs 65 2364 g in air with brass weights
What 1s the weight m vacuo?

A crude brass weight of nominal value 100 g weighs 99 9986 g in air, with brass
weights What s 1its true weight in vacuo?

A buret 1s calibrated by filling with water to the zero mark, withdrawing to the
25 ml mark, and weighing the water withdrawn From the following data,
compute the correction that must be applied at the 25 ml mark (similar correc-
tions at other intervals may be used to construct a correction curve for the
entire range of the buret)

Final reading = 25 00 ml

Initial reading = 0 03 ml
Weight of flask + water delivered = 81 200 g
Weight of flask = 56 330 g

Temperature of water = 21 5°C

A geologist often measures the density of a mineral by mixing two dense
liquids, carbon tetrachlonde and acetylene tetrabromide, n such proportions
that the mineral grains willyust float She then determines the density of the
liquid mixture, which1s equal to the density of the solid When a sample of the
mixture in which calcite (calcium carbonate) just floats 1s put in a specia
density bottle, the weight 1s 6 2753 g When empty, the bottle weighs 2 4631 g,
and when filled with water 1t weighs 3 5441 g What 1s the density of this
calcite sample”? (The temperature of these measurements 1s 25°C )

How many pounds, including its own weight, can ahydrogen-filled balloon lift
m air if 1t 1s 50 O ft m diameter? (The density of air 1s 1 205 g/liter and the
density of hydrogen 1s 0 0833 g/liter The lft 1s the difference between the
weight of the gas and that of an equal volume of air )

What percentage of your body (density approximately 1 03 g/ml) would be out
of the water while you floated on your back in Great Sat Lake (density of
water approximately 1 19 g/ml)?

How far into a 2-inch cube of wood (density = 0 90 g/ml) must a 14 g wron
screw, 1 inch m diameter, be driven in order that the block will just float®
(Assume that the block does not change i size when the screw 1s driven into
1t The density of iron 1s 7 60 g/ml Assume that the density of water 1s 1 00
g/ml)

A "Cartesian diver 1s a hollow sealed bulb made of thin glass, such that the
overall density 1sjust a little less than 1 g/ml As a consequence, 1t floats n
water |If pressure 1s applied to the gas over the water in which the bulb floats,
the bulb collapses a little and then sinks When the pressure 1s released, it
expands and floats again A glass (density = 2 20 g/ml) sphere made on this
principle weighs 3 25 g
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(@ What is its radius?
(b) What is the thickness of the glass?

The density of mercury at several selected temperatures is known as follows

1(°C) —10.00 0.00 1000 2000 3000 40.00 50.00
d (g/mb 136202 135955 135708 135462 135217 13.4973 134729

() Using the method of least squares, find the mathematical equation that
best fits these data (see pp 72-75).

(b) Find the correlation coefficient and the 95% confidence intervals for both
the slope and the intercept of the best-fit equation found in (a).



Formulas and Nomenclature

At first it may seem difficult to learn the formulas and names of the hundreds of
chemical compounds used in the introductory chemistry course. Actually the
job is not so hard if you start in a systematic way, by learning the atomic
building blocks that make up the compounds and the rules for naming the
compounds.*

One of the many ways to classify inorganic compounds is into electrolytes,
nonelectrolytes, and weak electrolytes. When eectrolytes are dissolved in wa-
ter, the resulting solution is a good conductor of electricity; the water solutions
of nonelectrolytes do not conduct electricity; the solutions of weak electrolytes
are very poor conductors. Water itself is an extremely poor conductor of elec-
tricity. A flow of current is a movement of electrical charges caused by a
difference in potential (voltage) between the two ends of the conductor.

In metals, electrons are the structural units that carry the electrical charge, a
negative one. But because electrons cannot exist for any significant length of
time as independent units in water, some other kind of charged structural unit
must be present in solutions of electrolytes. The general term for this charged
structural unit ision. A negatively charged ion is an atom (or agroup of atoms)
carrying one or more extra electrons it has received from other atoms. And,
naturally, those atoms or groups of atoms that gave up electrons are no longe:

* Most of the rules for chemical nomenclature are discussed in this chapter The approved
system for naming complex 1ons is given on page 391, and that for naming ortho, mera, andpyro
compounds on page 420.
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electrically neutral; they are positively charged ions. At al times, the solutions
or crystalsthat contain ions are electrically neutral, because the total number of
negative charges gained by one group of atoms always exactly equals the total
number of positive charges created in the groups from which the electrons
came. lons tend to stay in the vicinity of each other because of the attraction of
opposite electrical charges. lons that contain more than one atom in stable
combinations often are called radicals. In addition to explaining the electrical
conductivity of water solutions, ions are important because a tremendous num-
ber of chemical reactions take place between them.

Inorganic compounds also may be classified as acids, bases, and salts. This
classification is particularly useful as a basis for naming the chemicals with
which we shall deal.

The names of the elements (and many of the symbols used to represent them)
are traditional, rather than part of a logical system. The electrical charges that
the ions usually carry can be reasoned out, but chemists do not work through
such reasoning every time they want to use the charges or talk about them; they
simply know them as characteristic properties.

Once you have learned the symbols for the elements, you will easily recog-
nize and understand formulas. A formula is the shorthand notation used to
identify the composition of a molecule. It includes the symbol of each element
in the molecule, with numerical subscripts to show how many atoms of each
element are present if there are more than one. For example, the formula for
sulfuric acid, H,SO,, shows that this molecule has 2 hydrogen atoms, 1 sulfur
atom, and 4 oxygen atoms. Note that a molecular formula does not tell how the
atoms are bound together, only the kinds and numbers of atoms.

Listed in the paragraphs that follow are the names, symbols, and usual elec-
trical charges for 30 common positive ions, and the names and formulas for 37
common acids that are frequently mentioned in thistext. You should memorize
these so as to have them at instant recall; the use of flash cards or other
foreign-language learning aids is recommended (computer-generated drill pro-
grams also are helpful). Aside from the direct intrinsic value of these names and
formulas, you can reason out from them the names and formulas of almost 50
bases and over 1600 different salts, none of which should be memorized.

POSITIVE IONS WHOSE CHARGES DO NOT VARY

The ions listed in Table 8-1 carry exactly the same names as the elements from
which they are derived. For example, Na and Mg are sodium and magnesium
atoms, whereas Na* and Mg** are sodium and magnesium ions. These elements
do not normally form ions that have charges other than those shown.*

* Some of the elements listed here do exhibit other charges under very unusual conditions, but
this occurs so infrequently that we need not worry about it here. The principal exception, H™, is
discussed on page 109.



104

TABLE 8-1
Positive lons Whose Charges Do Not Vary
Single charge Double charge Triple charge
Hydrogen H+ Beryllium Be* Aluminum Al
Lithium Lt Magnesium Mg**
Sodium Na* Calcium Ca?*
Potassium K+ Strontium Sri*
Rubidium Rb* Barium Ba?*
Cesium Cs* Zinc Zn*t
Silver Ag+ Cadmium Cd?+
Ammonium NHY

POSITIVE IONS WHOSE CHARGES VARY

The atoms of some metal s can lose different numbers of electrons under differ-
ent conditions (Table 8-2). For these atoms it has been traditional to add the
suffix -ous to the atom'sroot namefor the lower charge state, and the suffix -ic
for the higher charge state. Thustheaurousionis Au*andtheauricionisAus*.
There is difficulty when an element has more than two charge states. To over-

TABLE 8-2
Positive lons Whose Charges Vary

Traditional names

IUPAC names Root -ous ending -ic ending
Copper(l) and (1) Cupr- Cu* Cu?+
Gold(l) and (l11) Aur- Au* Au it
Mercury(l) and (II) Mercur- Hg* (Hg3™) Hg?*
Chromium(ll) and (Ill) Chrom- Cr* Cr+
Manganese(ll) and (I11) Mangan- Mn?* Mn 3+
Iron(ll) and (1I1) Ferr- Fer Feit
Cobalt(ll) and (1) Cobalt- Co* Co3+
Nickel(Il) and (Ill) Nickei- N2+ Njs3+
Tin(ll) and (1V) Stann- Sn*t Snit
Lead(ll) and (1V) Plumb- Pb** Pb+*
Cerium(lll) and (1V) Cer- Ce3* Cetr
Arsenic(lll) and (V) Arsen- As’t As >+
Antimony(lll} and (V) Antimon- Sbh3+ Sbi+

Bismuth(ltt) and (V) Bismuth- Bit* B>+
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come this difficulty and to clarify some subtler points, the International Union
of Pure and Applied Chemistry (IUPAC) has in recent years recommended the
adoption of a system that, when applied to a positive ion, requires that the name
of the element be used and that it be followed immediately by its charge in
Roman numerals within parentheses. For example, Au* would be gold(l), and
Au** would be gold(I11); they would be read as "gold one" and "gold three,"
respectively. Until there is unanimous adoption of the [IUPAC system, chemists
will have to use both systems. In any case, neither system relieves the student

of the responsibility of knowing the usual charge states of the common
elements.

BASES

We define a base as any substance that can accept or react with ahydrogen ion,
H*. This definition includes awide variety of compounds, but for the present it
is convenient to limit our discussion to one specia type of base called a hy-
droxide. A hydroxide is any compound that has one or more replaceable hy-
droxide ions, OH~. Any of the positive ions cited in the preceding sections might
combine with the hydroxide ion, the principle being that the resulting com-
pound must be electrically neutral. Naturally there must be as many OH~ ions
as there are positive charges on the other ion. In naming, the word "hy-
droxide" is preceded by the name of the positive ion; for example,

NaOH sodium hydroxide
Co(OH), cobaltous hydroxide or cobalt(l1) hydroxide
Sn(OH), stannic hydroxide or tin(1V) hydroxide

ACIDS

We define an acid as any substance that has one or more replaceable hydrogen
ions (H*); we often say that an acid can donate one or more hydrogen ions to a
base. No matter how many H atoms a molecule might have, if none of them can
be replaced by some positive ion, then the molecule does not qualify as an acid.
On the other hand, if a molecule does have several H atoms, of which only one
is replaceable, that alone is enough to qualify it as an acid. In writing the
formula of an acid, it is traditional to show the replaceable H ions at the
beginning of the formula, separated from those that are not replaceable. For
example, in acetic acid, HC,H;0,, there is one replaceable H* and there are
three H atoms that are not replaceable. Besides identifying the number of
replaceable H atoms, this traditional method aiso provides a simple way of
knowing the charge of the negative ions; for every H* that is removed from an
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acid there must be one negative charge left on the residue. For example, if HBr
loses its H*, the Br~ has a minus-one charge; if H,SO, loses its two H*, the
SO3~ has a minus-two charge, and so on. The names and formulas of acids that
you should know in this course are listed in two separate groups below, because
the traditional method of naming them depends on whether or not the molecule
contains oxygen.

Acids That Do Not Contain Oxygen

These acids are named by putting the prefix hydro- before the rest of the name
of the characteristic element (or elements) and adding the suffix -ic.

HF hydrofluoric acid HCN hydrocyanic acid
HC1 hydrochloric acid H,S hydrosulfuric acid
HBr hydrobromic acid HN;, hydrazoic acid

HI hydriodic acid

Acids That Contain Oxygen

If the characteristic element forms only one oxygen acid, the name is that of the
characteristic element followed by the suffix -ic. Thus H,CO, is carbonic acid.
If the characteristic element forms two oxygen acids, the name of the one with
the larger number of oxygen atoms ends in -ic , and the name of the one with the
smaller number of oxygen atoms ends in -ous. Thus HNO, is nitric acid, and
HNO; is nitrous acid.

If there are several oxygen acids, there is a systematic terminology to indi-
cate more or less oxygen atoms than the number assigned to the acid whose
name ends in -ic. This can be illustrated by the oxygen acids of chlorine:

HClO, perchloric acid one more oxygen than the -ic acid
HCIO, chloric acid arbitrarily given the -ic ending
HCIO, chlorous acid one less oxygen than the -ic acid

HC10 hypochlorous acid one less oxygen than the -ous acid

Table 8-3 includes the common acids that contain oxygen.

The prefix thio- indicates that sulfur is present, usually as a replacement for
one or more oxygen atoms in acompound whose name isfamiliar. For example,
in thiosulfuric acid, one O atom of sulfuric acid has been replaced by an S atom;
in thiocyanic acid, the only O atom of cyanic acid has been replaced; in thioar-
senic acid, all of the O atoms of arsenic acid have been replaced by S. The rules
of naming do not normally show how many O atoms are replaced. HSCN is
placed in Table 8-3 because of the many similarities between oxygen and sulfur.
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TABLE 8-3
Acids That Contain Oxygen

Formula Name Formula Name
H,CO, Carbonic acid HCIO, Perchloric acid
H;BO, Boric acid (H!O, 1s similar to HCIO,)
H,S10, Silicic acid HCIO, Chloric acid
HNO, Nitric acid (HIO4 and HBrO, similar to HCIO,)
HNO, Nitrous acid HCIO, Chlorous acid
H,S0, Sulfuric acid HCIO Hypochlorous acid
H,S0, Sulfurous acid (HIO and HBrO similar to HCIO)
H,S,0,4 Thiosulfuric acid HMNO, Permanganic acid
H,CrO, Chromic acid HOCN Cyanic acid
H,Cr,0, Dichromic acid HSCN Thiocyanic acid
H,PO, Phosphoric acid H,C,0, Oxalic acid
H,;PO, Phosphorous acid H,C:H,0, Phthalic acid
H;AsO, Arsenic acid HC,H,0, Acetic acid
HAsO, Arsenious acid H(NH,) SO, Sulfamic acid
SALTS

One general type of chemical reaction is that occurring when a hydroxide reacts
with an acid. Thisreaction, like al chemical reactions, can be represented by a
chemical equation in which thereactants are separated by ** +** signsto indicate
that they are mixed together, the products are separated by ‘‘+°’ signs to
indicate that they are produced as a mixture, and the products are separated
from the reactants by an arrow to show that the reactants are producing the
products. In order to write achemical equation for the general reaction between
an acid and a hydroxide, we need to know first that in every case the acid
donates an H* to each OH~ of the hydroxide to form water (H,0), and second
that the electrically neutral combination of the positive ions from the hydroxide
and the negative ions from the acid is what constitutes asalz. 1f we expressthis
n very general terms, this type of reaction can be written as

hydroxide + acid — salt + water
Now that we know the names and formulas of some acids and bases, we can
also write equations for specific examples of this type of reaction, using our
shorthand notation. For example, if potassium hydroxide reacts with hydro-
bromic acid, we write

KOH + HBr — KBr + H,0O
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If cupric hydroxide reacts with perchloric acid, we write
Cu(OH), + 1 HCIO, — Cu(ClOy, + 2 H,0

And if aluminum hydroxide reacts with sulfuric acid, we write
2 AI(OH); + 3 H,SO, — Al(SOy; + 6 H,0

In addition to showing which chemicals react and which are produced, the
chemica equation shows the relative numbers of molecules needed in the reac-
tion. In the above reactions we had to use the proper numbers of acid molecules
and base molecules so that the salt that was formed would be electrically
neutral. In the third reaction, for example, the two AI** ions require three SO3-
ions in order to have electroneutrality. Besides showing the correct chemical
formulas of al the reactants and products, abalanced chemical equation aways
abides by a principle of conservation, which might be stated as "atoms are
never created or destroyed in a chemical reaction.” In other words, no matter
how drastically the atoms are rearranged in a chemical reaction, there must
always be the same number of each kind of atom in the collection of products
(the righthand side of the equation) as thereis in the collection of reactants (the
lefthand side of the equation).

The rules for naming a salt depend on whether or not the acid from whichit is
derived contains oxygen.

1. If the acid does not contain oxygen, the salt is named by replacing the
acid prefix hydro- by the name of the positive ion and changing the
suffix -ic to -ide; for example,

KBr potassium bromide
Sb,S; antimonous sulfide or antimony(111) sulfide
Hg(CN),  mercuric cyanide or mercury(ll) cyanide

2. Ifthe acid does contain oxygen, the salt is named by giving the name of
the positive ion followed by the name of the acid, but changing the
suffix -ic to -ate or the suffix -ous to -ite; for example,

SrCO, strontium carbonate

Cu(ClOy), cupric perchlorate or copper(ll) perchlorate
(NH),S0, ammonium sulfite

Co(BrO), cobaltous hypobromite or cobalt(ll) hypobromite

By changing the proportions in which some acids and bases are mixed, it is
possible to make salts in which only some of the replaceable hydrogen atoms
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are actually replaced. For example, with H,PO, and NaOH, three different
reactions are possible:

3 NaOH + H;PO, — Na,PO, + 3 H,0
2 NaOH + H;PO, — Na,HPO, + 2 H,O
NaOH + H;PO, —» NaH,PO, + H,O

Each of these reactions is possible, and each equation is balanced. Obviously,
we need different names for the three different kinds of sodium phosphate salts.
Of the several ways to accomplish this, the most highly recommended and
unequivocal is to include as part of the name the number of H~ ions that have
not been replaced in salt formation. In the example above we would have

NazPO, sodium phosphate
Na,HPO, sodium monohydrogen phosphate
NaH,PO, sodium dihydrogen phosphate

If the acid contains only two H*, then only two different salts are possible;
they are most acceptably named by the method just described. However, an-
other traditional method that will probably continue in use for many yearsis to
use the prefix bi- for the salt of the acid with just half of the hydrogen atoms
replaced, asillustrated for the sodium bisulfate that is produced by the reaction

NaOH + H,SO, — NaHSO, + H,0

BINARY COMPOUNDS NOT DERIVED FROM ACIDS

The atoms listed in this section may combine with many metals to form binary
compounds (compounds made up of two elements) that are saltlike in nature,
but are not derived from acids. For purposes of naming, it is convenient to
assign negative charges to these atoms. Except in the names of the oxides, the
suffixes-ous and-ic are not used with metals forming compounds in this group.

The names of al these compounds end in -ide. Only the metal oxides of this
group are common.

H~ LiH lithium hydride

03 FeO ferrous oxide (Fe,O, ferric oxide)
N3~ SnyN, tin nitride

ps- Ba;P, barium phosphide

As?” NajAs sodium arsenide

c* ALC, aluminum carbide

Sit~ Mg,Si magnesium silicide
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BINARY COMPOUNDS COMPOSED OF TWO NONMETALS

Allowing for abit of quibbling one way or the other, there are only 20 nonmetal-
lic elements. Of these 20 elements, six are so unreactive that until recently they
were thought never to combine with other elements. If, for practical consid-
erations, we eliminate these six elements and hydrogen (which we've already
dealt with in various forms above), this leavesjust 13 nonmetallic elements (B,
C,N,O, F, Si P, S Cl, Se Br, Te, 1) that can combine with each other. These
nonmetallic binary compounds are designated by the names of the two elements
followed by the ending -ide. Before the name of the second element there is a
prefix to indicate how many atoms of it are in the molecule. Unfortunately, this
is not usually done for the first element. The following are examples of some
common compounds of this type:

CO carbon monoxide SO, sulfur trioxide

CO, carbon dioxide CCl, carbon tetrachloride
Cl,0 chlorine monoxide PF, phosphorus pentafiuoride
Clo, chlorine dioxide SF, sulfur hexafluoride
Cl1,0, chlorine heptoxide N,O, nitrogen tetroxide

PROBLEMS A

Name the following compounds (proper spelling is required).

1. Ca(OH), 12. FeC,0, 23. AKCIO),
2. Ag,PO, 13. Hg,Cl, 24. Hg(C,H,0,),
3. AgSCN 14. MnCO, 25. CsClO,

4. MgC,H,0, 15. Mn(OH), 26. Sr(I0),

5. (NH,),SO, 16. Ni(CIO), 27. Rb,AsO,
6. ZnS 17. CrAsO, 28. Be;N,

7. Cd(CN), 18. SnBr, 29. Ca(HCO»),
8. Ba(10,), 19. CrF, 30. sb(NO ),
9. CuSO, 20. Pb(MnO,), 31. PCl,

10. Cul 21. Na,SiO, 32. Bi(OCN),
11. Fe(NO ), 22. Bi,O, 33. AlfS;04);

Without consulting a text, give the formulas for the following compounds.
34. aluminum bromate 36. bismuth(l11) oxide

35. mercurous phosphate 37. strontium bicarbonate
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38. aurous iodide 49. aluminum acetate
39. chromium(l11) iodate 50. calcium oxalate
40. manganous hydroxide 51. sodium chlorite
41. lithium arsenide 52. tin(Il) azide
42. arsenic(Il) sulfate 53. mercury(Il) cyanide
43. stannic chloride 54. ammonium sulfite
44. nickelous periodate 55. cobalt(Il) permanganate
45. chlorine heptoxide 56. plumbous carbonate
46. silver oxalate 57. zinc phosphide
47. chromium(ll) borate 58. cupric silicate
48. antimonous sulfide 59. barium hypoiodite
60. Given that selenium (Se) is similar in properties to sulfur (S), and that fran-
cium (Fr) is similar to sodium (Na), write the formulas for the following
compounds.
(a) zinc selenide () francium selenate
(b) francium phosphate (f) selenium hexafluoride
(c) cobalt(ll) selenite (9) francium hydride
(d) selenium dioxide
61. Write balanced chemical equations for the following reactions.
(a) beryllium hydroxide + thiocyanic acid
(b) periodic acid + antimonic hydroxide
(c) mercurous hydroxide + acetic acid
(d) arsenious acid + chromous hydroxide
(e) eerie hydroxide + boric acid
(f) hydrazoic acid + ferrous hydroxide
(9) lithium hydroxide + hypobromous acid
PROBLEMS B

Name the following compounds (proper spelling is required).

62.
63.
64.
65.
66.
67.

Ag,PO, 68. Zn(10,), 74. AuHSO,
CoCl, 69. Pby(BO,), 75. Ba(BrO),
Be(NO,), 70. As(CN), 76. CaH,
Fe(MnO ), 71. Nif(AsOy), 77. N;O,
NH,NO, 72. 1,0, 78. Sb,S,
ALS; 73. Ba,Si 79. MgC,0,



112

Formulas and Nomenclature

80. 1Cl1 83. Ca,P, 86. CrBr,

81l. Rb,SiO, 8. MnO, 87. BaCrO,
82. SF, 85. Cu(C,H;0,), 88. Cd(SCN),
Without consulting a text, give the formulas for the following compounds.
89. potassium oxalate 102. iron(l11) bromate

90. cupric arsenate 103. arsenic(V) perchlorate

91. bismuthous carbonate 104. magnesium monohydrogen borate
92. manganese(ll1) oxide 105. boron trifluoride

93. mercurous sulfate 106. strontium silicate

94. nitrogen tri-iodide 107. beryllium hydroxide

95. cobalt(ll) borate 108. stannic oxide

96. cesium hypoiodite 109. gold(l1l) fluoride

97. boron nitride 110. ferric chromate

98. cadmium dichromate 111. iodine pentoxide

99. ammonium acetate 112. lithium thiocyanate

100. zinc cyanide 113. silver thiosulfate

101. tin(I1) phosphate 114. antimonic permanganate

115. Given that astatine (At) is similar in properties to chlorine (CI), and that
gallium (Ga) is similar to aluminum (Al), write the formulas for the following

compounds.

(a) potassium astatate (d) hydrastatic acid
(b) barium astatide (e) gallium thiocyanate
(c) gallium sulfate (D gallium hypoastatite

116. Write balanced chemical equations for the following reactions.
(8 hydrosulfuric acid + zinc hydroxide
(b) ferric hydroxide + permanganic acid
(c) oxdic acid + plumbous hydroxide
(d) aluminum hydroxide + carbonic acid
(e) bromic acid + cupric hydroxide
(f) auric hydroxide + dichromic acid
(9) sulfamic acid + strontium hydroxide

= —
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Sizes and Shapes of Molecules

A knowledge of molecular shapes and sizes isimportant to an understanding of
chemical reactions. The shape of a molecule (and the bond types it possesses)
has important implications for the manner in which it enters into chemical
reactions. The shape and size of molecules aso influence their packing in the
crystalline state.

When atoms combine to produce molecules, they often do so in accord with
theoctet rule. Y our text undoubtedly contains afairly detailed discussion of the
octet rule. In essence, it may be described as the tendency for an atom to lose,
gain, or share electrons in order to achieve an s%** configuration in the outer-
most shell. The simplest atoms (H, Li, Be, and so on) tend to achieve a 1s?
configuration, according to what might be called the duet rule.

In Chapter 8, we emphasize the loss and gain of electrons, leading to the
formation of electrically charged ions, such as Na* and Cl~. When electrons are
shared, amolecule is formed, and the atoms are connected by a covalent bond.
In this chapter we emphasize the approximate shapes, interatomic distances,

and bond energies of molecules and molecular ions that are held together by
covalent bonds.

COVALENT BOND ENERGIES

The strengths of the bonds that hold the atoms together in a molecule can be
determined in avariety of ways: for example, by direct calorimetric measure-
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ment, by dissociation equilibrium measurements, by absorption spectrum mea-
surements, or by mass spectrometry.

We define bond energy as the energy change (AH ) for the chemical process in
which one mole of a given bond is broken, when both the reactants and the
products are in the hypothetical ideal-gas state of 1 atm and 25°C. For a
diatomic molecule, the bond energy is identical to the energy required to dis-
sociate the gaseous molecule into its respective gaseous atoms. For the dissoci-
ation of Cl, gas this corresponds to the reaction

Cly gy 2 2 Cl,

for which the C1-Cl bond energy is 58.0 kcal. We say that AH¢—cy = 58.0 keal.

For a polyatomic molecule of the type AB,, which possesses n A-B bonds,
our definition of bond energy implies that each bond is the same, and that it
corresponds to \In of the total energy required to dissociate the gaseous AB,
molecule into A + n B gaseous atoms. This is a useful definition except when
studying the detailed steps of a chemical reaction. For example, the total bind-
ing energy in a CH, molecule is 397 kcal/mole and, by our definition of bond
energy, the C-H bond energy = 397/4 = 99.3 kcal. Extensive, complicated, and
detailed studies have shown, however, that each H atom is not equally easily
removed from carbon in this molecule; it is estimated that the individual bond
energies are 104 kcal for CHz-H, 106 kcal for CH,~H, 106 kcal for CH-H, and
81 kcal for C-H, with atotal of 397 kcal. In most cases, such detailed informa-
tion is not available; neither is it normally needed except in discussion of the
individual steps involved in chemical reactions.

The atoms of some elements (such as C, N, and O) are able to share more
than one pair of electrons between them, to form single, double, or triple
bonds—depending on whether one, two, or three pairs of electrons are shared.
In general, the bonding energy increases and the internuclear distance de-
creases as the number of bonds between a pair of atoms increases.

By studying the experimentally determined bond energies of hundreds of
compounds, researchers have uncovered some useful generalizations, such as
the following.

1. A single bond between two identical atoms has about the same strength
(A Hy_y) in any molecule in which it occurs. Because the atoms are
identical, the bond is purely covalent.

2. A strictly covalent bond between two different atoms (A and B) is about
the same strength as the average of the bond strengths that would be
observed if each atom were bonded to another like itself. That is,

AH, p = %[AHA—A + AHy 3] (9-1
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TABLE 9-1
Covalent Bond Radii and Energies, and Electronegativities
Bond energy Electronegativity
Element Radius (A) AH, -4 (kcal/mole) (e) of element
H—H 0.30 104.2 2.1
8—B 0.88 62.7 20
c—C 0.772 83.1 25
C=C 0.667 147
C=C 0.603 194
Si—Si 1.17 42.2 18
Si=Si 1.07
Ge—Ge 1.22 37.6 18
Sn—Sn 1.40 34.2 18
N—N 0.70 38.4 3.0
N=N 0.60 100
N=N 0.55 226.2
P—P 110 51.3 21
P=P 1.00 117
As—As 121 32.1 20
Sb—Sb 1.41 30.2 19
Bi—Bi 1.52 25 19
0—-0 0.66 33.2 35
0=0 0.55
§—S 1.04 50.9 25
$=S8 0.94
Se—Se 1.17 44.0 24
Se=Se 1.07
Te—Te 1.37 33.0 2.1
F—F 0.64 36.6 4.0
CI—CI 0.99 58.0 3.0
Br—Br 114 46.1 2.8
I—l 1.33 36.1 2.5

These two generalizations mean that to each element there can be assigned a
“covalent bond energy" (AH._4), which can be used to estimate the strength
of abond between any two atoms that form a strictly covalent bond. Table 9-1
lists afew of these covalent bond energy assignments. Carbon and iodine form a
purely covalent bond so, by our second generalization, its approximate bond
energy would be

AHe; = }AH._« + AH ]
= 3[83.1 + 36.1] = 59.6 kcal
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ELECTRONEGATIVITY

Unfortunately, as in so many sharing processes, the pair of electrons in a
covalent bond often 1s not shared equally by the two atoms The atom with the
greater electron affinity will hold the par closer to its nucleus, with the result
that its end of the bond (and its end of the molecule) will be somewhat more
negatively charged than the other end When this happens, we say that the bond
1s partially ionic and, because opposite charges attract each other, this partially
ionic bond will be stronger than it would have been with equal sharing

Linus Pauling made a careful study of atremendous number of partially ionic
covalent bonds and came to the conclusion that, as a measure of its electron
affinity, each element could be assigned an electronegativity value (€) that would
make 1t possible to estimate the energy of these bonds To calculate the approx-
imate bond energy (AH,_g) between the atoms A and B, his formula requires
knowledge of the A-A bond energy (AH, .), the B-B bond energy (AHg_s),
and the electronegativities of A and B (e, and ez) Table 9-1 lists some elec-
tronegativity values along with covalent bond energies Pauling's finding, which
we might call generalization #3, 1s the following

3 The energy of a partially ionic covalent bond between two atoms (A
and B) 1s equal to the energy expected from a strictly covalent bond
between the two atomsplus an amount of energy related to the square
of the difference n their electronegativities In equation form, Paul-
ing's formula (with units in keal) 1s

AH, g = 3{AHA_y + AHy_g] + 23 06(e, - €p)? (9'2)

You can see that, f A and B have equal electronegativities, then AH, , 1s
simply the average of the two covalent bond energies The greater the differ-
ence in electronegativites, the greater the percentage of ionic character and the
stronger the bond If the difference in electronegativity becomes too great, the
bond is essentially ionic, and the atoms are held together by electrostatic forces
as m an ionic crystal, the concept of a molecule disappears

From this brief discussion you can see that more often than not most covalent
bonds will be partially ionic, ' and most ionic bonds will be partially cova-
lent ©* We shall describe a bond as being ionic or covalent according to its
predominant characteristic Some chemists like to say that a bond possesses a
certain percent ionic character One way of calculating an approxumate value
for this quantity 1s with the expression

og Fo = - (52’ (-3

where F. 1s the fraction of covalcnrcharacter The fraction of wnic character 1s
F=1-F
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PROBLEM:

Calculate approximate values for the bond energy and the percent ionic character
for the C-Cl bond in CCl,.

SOLUTION:
From Table 9-1 we find

AH._. = 83.1 kcal/mole
AH_, = 58.0 kcal/mole
and
€ = 25
€, =30
With the Pauling equation, we obtain

AHc o = 483.1 - 58.0] + (23.06X3.0 - 2.5)*
70.6 + 5.8 = 76.4 kcal/mole

log F, = — (30—;3—5) = -0.027778
F. = 0938
F. = | - 0938 = 0.062

Percent ionic character = 6.2%

COVALENT BOND RADII

Before considering shape principles, we should take a look at the sizes of
molecules, particularly their internuclear distances. Electron diffraction studies
of molecules in the gas phase are especially useful for the determination of
these distances (and the angles that the atom pairs form with one another). An
interatomic distance is defined as the average internuclear distance between
two atoms bonded together. Because these two atoms vibrate, the distance
between them alternately lengthens and shortens in rapid succession but, if the
distance is averaged for a period of time, the atoms appear to be separated by
some fixed distance. A fourth generalization can be made about these
distances.

4. The atoms of a given element always appear to have essentially the
same radius (R), regardless of the kinds of atoms to which they are
bound (or their electronegativities). Thatis, covalent radii are additive,
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and the approximate interatomic distance (D )between two atoms (A
and B) will be given by

Dis = Ry + Rg

PROBLEM:
Calculate the C-Cl distance in the CCl, molecule.

SOLUTION:
The interatomic distance is the sum of the covalent radii so, with data from Table
9-1,

Dc_.i=R( +R=077+09 =176 A

We have already observed in the preceding problem that the C-Cl bond energy is
about 76 4 kcal/mole, and that it possesses about 6% ionic character.

SHAPES OF MOLECULES

To predict the shape of a molecule, we can apply a set of simple principles.
Before we outline them, however, you should realize that they have little pre-
dictive value when you try to answer the question, "What molecule is formed
when two or more particular elements react?' From the same elements, but
under differing conditions, it is possible to prepare many different molecules,
not just one. Instead, our principles will answer the question, "What is the
shape of the molecule with a particular formula?”

The concept of the ¢ entral atom is convenient to use in discussing the shapes
of molecules. In asimple molecule, one of the atoms usually is "central” to the
whole molecule. For example, in CCl, the central atom is C, the one to which al
the other atoms are attached.

We shall use the term ligand (L) in its broadest sense to refer to those atoms
that are attached to the central atom. What we mean by the shape of a molecule
or ion is the geometrical arrangement of the ligands about the central atom.

General Predictive Principles

In broad outline, our shape-prediction approach will assume that the valence
electrons of the central atom (M) are all spin-paired (that is, their axes are
parallel but spinning in opposite directions), and that these pairs of electrons
will repel each other in such a way that they occupy positions of minimum
repulsion (that is, positions of minimum potential energy). The electron pairs
will try to get as far away from each other as they can and still stay in the
molecule. The central atom's valence electron pairs will fall into one of two
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categories: (

1) bond pairs that are used to bind ligands to the central atom, or (2)

lone pairs that are held by the central atom but not used for bonds. Each pair,
regardless of the type, will occupy a molecular orbital, not an atomic orbital.
The key to success in prediction hinges on finding the correct number of val-
ence electrons associated with M.

A summary of all the procedural steps for shape prediction is given here
because it will be useful for later reference; the application of the steps is
illustrated in detail on the following pages.

1. Find the number of valence electrons around the central atom by drawing

an

"electron-dot formula" for the molecule or ion whose shape is

desired. See pp 120-121. Follow these rules.

(@
(b)
(©)

(d)

(€)

The central atom must be the least electronegative atom in the
molecule or ion. H can never be a central atom; it can form only
one bond.

Every ligand must obey the octet rule (or duet rule for H).

If the shape involves an ion (but not a complex ion), take account
of the charge on the ion by adding one valence electron to M for
each negative charge, or subtracting one valence electron from M
for each positive charge.

If possible, also make M obey the octet rule. Manipulation will be
possible only if one or more /igands can form multiple bonds. The
four or six éectrons involved in double or triple bonds count as
belonging to both the ligand and the central atom, just as do the two
electrons in a single bond. See pp 121 and 132.

For complex ions you can ignore the electrons originally possessed
by M (usually a metal ion) and the charge on the ion. You do not
need to draw an electron-dot formula. You need to know only that
each ligand contributes a bond pair to M; there are no lone pairs.
The number of ligands therefore directly tells you the number of
pairs of valence electrons around M. See p 141.

2. Calculate the number P of electron pairs around the central atom (M), as
follows.

@

(b)

(©)

If the electron-dot formula shows no multiple bonds (double or
triple bonds) between M and theligands, dividethe total number of
electrons around M by 2 to get the number P of electron pairs.

If the electron-dot formula shows one or more multiple bonds be-
tween M and the ligands, only two electrons are counted for each
multiple bond (double or triple). Add these electrons to those in-
volvedinsinglebondsorlonepairs, then dividethe total by 2to get
the number P of electron pairs around M. See pp 121, 132, and 138.
If the number of valence electronsin (a) or (b) is an odd number,
then (for the purpose of this calculation only) increase the number of
electrons by one to make it even before proceeding as in (&) or (b).
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This 1s equivalent to treating the one odd electron as a lone pair,
though 1t 1s less effective in repulsion than atrue lone parr See p
140

3 Deternune the electron-pair geometry of the molecule or 10n, using the
guidelines in Table 9-2

4 Deteimme the molecular geometry taking into consideration the bond

pairs and lone pairs involved 1n the electron-pair geometry See pp
121-132.

Electron-Dot Formulas

The first thing you must be able to do in order to predict molecular shapes is to
draw an electron-dot formula, so we'll tackle that subject first Including H,
there are 16 active nonmetals for which you should know the numbers of
valence electrons in the uncombined atoms Except for H (which has only ones
electron), these elements are all found to the right of the diagonal in the p block
of the periodic table (see inside front cover) Each atom has two s electrons n
its valence shell, the number of p electrons 1s different for different atoms
(Basically, we are uninterested in metals here, metals rarely form predomi-
nantly covalent bonds, but tend to form ionic bonds Except for Xe, we also can
ignore the noble gases, with an already filled s2p*® configuration, they are
unreactive )

It will pay you to know (without having to look in the periodic table or tables
of electron configurations) that the halogens (F, CI, Br, |, At) al have seven
valence electrons, that the oxygen family (O, S, Se, Te) al have six, that the
nitrogen family (N, P, As) have five, that the carbon family (C, S1) have four,
and that the boron family (B) have three It will also pay you to know that
electronegativities decrease from right to left in a row, or from top to bottom in
a column, n the periodic table

Figure 9-1 shows electron-dot formulas in which each ligand possesses eight
electrons as a result of sharing the needed number from the central atom (ex-
cept H, which needs only two electrons to fill its valence shell) In each case,
the least electronegative atom 1s central, except for NHY% where H cannot be
central In the case of the NHf and SO3- 1ons, the number of dots reflects the
loss or gain of electrons as required by the charge on the 1ons In three cases
(BCl,, CIF,, and PCl,) the octet rule has been violated for the central atom, but
1t 1s not possible to rectify this because the ligands (all halogens in this case) are
not able to form multiple bonds If both the hgands and the central atom never
violated the octet rule, there would always be just four pairs of electrons
around the central atom, and all molecular structures would be tetrahedral It's
because there are so many exceptions to the octet rule for the central atom that
there are so many different shapes of molecules

The halogens and boron can form only single bonds The oxygen-family
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Electron-dot structures.

atoms may form two single bonds or one double bond. The nitrogen-family
atoms may form three single bonds, a single and a double bond, or atriple bond.
The carbon-family atoms can form four single bonds, two singles and a double,
one single and a triple, or two double bonds. For our first examples, we exclude
molecules or ions in which multiple bonds can be invoked in order to make the
central atom obey the octet rule.

Electron-Pair Geometries

As we discuss the electron-pair geometries for the molecular systems with two
or more pairs of electrons, imagine each pair of electrons to be attached to M by
aweightless string that permits free movement within the confines of the tether.
Under these conditions it would be natural to expect that, with only two sich
pairs of electrons, the pairs would be diametrically opposite each other with M
in the center. Within the confines of the string, any other position would bring
them closer together, in a more repulsive condition. Thus, when there are only
two electron pairs around M (that is, when P = 2), the electron-pair geometry is
always linear (that is, the angle, p-M-p, is always 180°). The letter prefersto a
single pair of electrons.

When P = 3, the two most likely electron-pair geometries are a A-pyramid
with M at the apex, and a /A -coplanar structure in which M lies at the center of
an equilateral triangle and in the same plane as the electron pairs, which lie at
the corners of the triangle. A little reflection quickly leads you to the A-coplanar
structure as the one with less electron-pair repulsion, for the electron pairs are
farther apart in this configuration. The p-M-p angle is 120°.

When P = 4, the two most likely electron-pair geometries are a [J-coplanar
structure, in which M lies at the center of the square and in the same plane as
the pairs of electrons, which lie at each corner of the square; and a tetrahedral
structure with M at the center of the tetrahedron outlined by the four pairs of
electrons, one pair at each apex of the tetrahedron. Again, for a given length of
string, the pairs of electrons will be farther from each other in the tetrahedron,
in which the p-M-p angle is 109°28’, than in the [C-coplanar structure, where
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TABLE 9-2
Guidelines for Determining Electron-Pair Geometry
Number (P)
of electron Electron-pair geometry Hybrid orbitals
pairs (see pp 121-132) (see pp 135-136)
2 Linear sp
3 A-Coplanar sp?
4 Tetrahedral sp?
5 A-Bipyramidal sp3d
6 Octahedral (same as (I-bipyramidal) d2sp? or sp3d?
7 Pentagonal bipyramidal spid?®
8

-Antiprism (or distorted dodecahedral) disp?

the p~-M—p angle is 90°; the tetrahedral electron-pair geometry thus will always
be expected with four pairs of electrons.

When P = 5, there come to mind the possibilities of (1) apentagonal-coplanar
structure or (2) a A-bipyramid formed by placing two triangle-based pyramids
base-to-base, with M centered in the plane where the two bases come together.
Again, for a given length of string, the repulsion between the electrons will be
greater in the coplanar pentagon, where the p-M-p angle is 72°, than in the
A-bipyramid, where the p-M-p angle is either 90°, 120°, or 180°, depending on
which two pairs of electrons are under consideration. The A-bipyramid will
always be the expected electron-pair geometry.

At least three reasonable electron-pair geometries might occur to you for the
P = 6 case. They are (1) acoplanar hexagon (with M centered in the plane), (2)
a triangular prism (two triangular pyramids, apex-to-apex, with base edges
parallel to each other and M located at the apex-to-apex contact), and (3) an
octahedron (a [J-bipyramid formed by placing two square-based pyramids
base-to-base with M centered in this base plane). The same arguments used
above lead to the conclusion that, when P 6, the expected electron-pair
geometry will always be the octahedron. Note that all the p-M-p angles be-
tween adjacent p positions are the same, 90°, which means that all the
electron-pair positions are equivalent in the octahedron, in contrast to the
nonequivalent positions in the A-bipyramid.

Having established the electron-pair geometry for the common numbers of
electron pairs, we note that, in the more complicated case when P = 7, the
expected electron-pair geometry is a pentagonal bipyramid with M centered in
the common pentagonal base plane. And for P = 8, three electron-pair geomet-
ries are possible: acube with M at the center; a square antiprism (two square-
based pyramids, apex-to-apex, with the base of one rotated 45° relative to the
other, and M located at the apex-to-apex contact); and adistorted dodecahedral
arrangement. The square antiprism and the distorted dodecahedron are about
equally probableandinvolvelesselectron-pair repulsionthanthesimplecubic.
The number of compounds in which M hasP = 1 or P = 8 isactually rather
limited.
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Molecular Geometries

Now, let us look at molecular geometries or shapes. These are determined by
the number (BP) of electron pairs that are used as bond pairs, for these bond
pairs will lie in molecular orbitals between M and L (the ligands) in positions
determined by P. as we have just discussed. The total number of pairs often
(usually) will be equal to the number of ligands attached to M. When this istrue
(that is, when P --= BP), the molecular geometry will be identical to the
electron-pair geometry. In the sketches, the electron-pair geometry is shown by
shaded planes, and bond pairs of electrons by solid lines. The lone pairs (LP)of
electrons are shown as dots.

When P = [, we have atrivial case (such as HCI, in which H is considered to
be the central atom), in which the only pair is of necessity a bond pair or there
would be no molecule at all. The shape is typical of all diatomic molecules
regardiess of the number of electron pairs—it is a "dumbbell" molecule.

When P = 2, as in BeCl, (Figure 9-2), the molecular geometry is linear,
because both pairs are bond pairs repelling each other at 180°.

Linear

FIGURE 9-2
Linear molecule.

The compound SnCl,, which appears superficially to be similar to BeCl,.
actually is different because P 3, which leads to a triangular coplanar
electron-pair geometry. Here, however, BP = 2 and LP = 1. and the net result
is that SnCl, is an angular molecule (Figure 9-3) rather than a linear one.

Sn Sn

c:/ \Cf c:/// \

Angular

Ci

FIGURE9-3
Angular molecule.

A triatomic molecule is never called triangular or planar, even though it
always is both; it always should be called either linear or angular. In either
case, the three atoms will lie in the same plane, because any three noncollinear
points always determine aplane.

Boron trichloride also has three electron pairs (P = 3), but all three are bond
pairs and the moleculeistriangular-coplanar (Figure 9-4).
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Ci Ci

AR,

Triangle coplanar

FIGURE 9-4
Triangular-coplanar molecule.

For CCl,, with P = 4, the molecular structure is tetrahedral with C at the
center, because BP also is 4 (Figure 9-5).

Cl

C/CNC _— C\\\c.

Cl
Tetrahedral

FIGURE 9-5
Tetrahedral molecule.

The ammoniamolecule is another in which 7 = 4, but the moleculeiscalled
pyramidal, not tetrahedral, because there are only three bond pairs (Figure 9-6).
At the apex of the pyramid is the N atom, and the lone pair of electrons

Pyramidal

FIGURE 9-6
Pyramidal molecule.
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occupies a tetrahedral position in the electron-pair geometry. The term

"pyramid" is applied to irregular tetrahedra, the term "tetrahedron" only to
regular (equal-edged) tetrahedra.

Still another type of molecule exists for P = 4; water is an example (Figure
9-7). Here, BP = 2, and LP = 2. The net result is an angular molecule with the
two lone pairs occupying tetrahedral positions in the electron-pair geometry.

Angular

FIGURE 9-7
Angular molecule.

Note the change in molecular geometry that occurs when a proton (H* with
no electrons) is bonded to an NH, or an H,O molecule through a coordinate

covalent bond to form NH , or H,O*; in each, P still equals 4, but the number of
bond pairs has increased (Figure 9-8).

Tetrahedral Pyramidal

FIGURE 9-8
Tetrahedral molecule (left) and pyramidal molecule (right).

A common type of molecule is exemplified by PCI.. in whichP = 5. Because
all of the pairs are bond pairs, it follows that the molecular geometry will be the
same as the electron-pair geometry, a A-bipyramid (Figure 9-9). Note that al of
the P-CI bond distances are the same, but that the CI-Cl distances (not bonds)
are greater between any two Cl atoms in the plane than between an apical Cl
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Cl Cl

Cl Cl -~
i - i
Cl
|

Cc
Triangular bipyramid

FIGURE 9-9
Triangular-bipyramidal molecule.

and a Cl atom in the plane. Up to this point, it has made no difference to
molecular shape which pair of electrons in agiven set of electron pairs was used
as alone pair. But when the electron-pair positions are not equivalent, then the
lone-pair positions are all-important in determining the molecular shape.

A bond pair of electrons has aless effective negative charge than alone pair,
because the former's charge is more reduced by its lying between two positive
nuclei than the latter’s charge is by its being attached to only one nucleus. As a
result, we would expect a lone-pair-lone-pair repulsion to be greater than a
lone-pair-bond-pair repulsion, and this in turn to be greater than a bond-pair-
bond-pair repulsion. That is,

LP-LP > LP-BP > BP-BP

To simplify the application of these differencesin repulsion to the determination
of molecular shapes, we can, for practical purposes, ignore the repulsions be-
tween pairs of electrons that lie at angles greater than 90° to each other in
comparison with those that lie at angles of less than 90°.

Let us apply these principles to the molecule TeCl,, in which P = 5, BP = 4,
and LP = [. Two molecular shapes are possible (Figure 9-10). The one that
actually exists is the one with the least repulsion between the electron pairs.

Model (a) has 3 LP-BP repulsions at 90° and
3 BP-BP repulsions at 90°;

Model (b) has 2 LP-BP repulsions at 90° and
4 BP-BP repulsions at 90°.

In both models, all other repulsions are at angles greater than 90° and can be
ignored. Because LP-BP repulsion is greater than BP-BP repulsion, it follows
that (b) has less electron-pair repulsion than (a), and TeCl, has the shape of a
seesaw, as observed.
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FIGURE 9-10
Two possible shapes of TeCl,.

In CIF,, whereP = 5, we have to make a more complicated decision involv-

1g three possible structures (Figure 9-11). We apply the same principles just
ised for TeCl,.

Model (a) has6 LP-BPrepulsionsat 90°;
Model (b) has | LP-LP repulsion at 90°,
3 LP-BPrepulsionsat 90°, and
2 BP-BPrepulsions at 90°.
Model (c) has 4 LP-BP repulsions at 90° and
2 BP-BPrepulsions at 90°.

Aodels (@) and (b) both have more electron-pair repulsion than model (c); hence
ve would choose the structure of CIF, to be a T-shaped molecule as in (c),
vhich in fact it is.

FIGURE 9-11
Three possible shapes of CIF,

WhenP = 6, asin SF,, the structure is simple, because all the pairs are bond
>airs, and the molecular geometry is the same as the electron-pair geometry; it
soctahedral (Figure 9-12).
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Octahedral

FIGURE 9-12
Octahedral molecule.

The problem is not significantly more difficult for a molecule such as IF..
where P adso equals 6, but BP = 5 and P = 1. With an electron-pair geometry
that is octahedral, all positions are equivalent and it does not matter which
position is occupied by the one lone pair. No matter how you look at it, IF;is a
[J-based pyramid with the | atom centered in the base (Figure 9-13).

F F

F F

\1 e 3 ,\1 —
AL —\

Square-based pyramid

FIGURE 9-13
Square-based pyramidal molecule.

Again, because all octahedral positions are equivalent, the shape of the ion
IC14 can easily be determined. Here, P = 6, BP = 4, andLP = 2. Note that one
electron was contributed to the central | atom by the negative charge on the ion.
The two possible structures are shown in Figure 9-14. We evaluate the mini-
mum repulsion as follows.

Model (a) has 8 LP-BP repulsions at 90° and
4 BP-BP repulsions at 90°;
Model (b) has | LP-LP repulsion at 90°,
6 LP-BP repulsions at 90°, and
5 BP-BP repulsions at 90°.
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FIGURE 9-14
Two possible shapes of ICI,

Offhand, the minimum repulsion in the two structures might seem similar,
but the decrease in repulsion by having the very strong LP-LP repulsion go
from 90° asin (b) to 180° as in (a) is so great that it more than compensates for
the smaller simultaneous increase in repulsion caused by having one BP-BP
repulsion at 90° as in (b) go to a LP-BP repulsion also at 90° as in (a). As a
consequence, [Cl; is a [J-coplanar molecule as shown in (a).

A good example of a pentagonal-bipyramidal molecule is IF,, where P = 7.
All the pairs are bond pairs. Figure 9-15 shows the structure.

F
|

F

F\/ﬁ__l
ke

F

F
Pentagonal bipyramid

FIGURE 9-15
Pentagonal-bipyramidal molecule.

SbBri~ has an especially irregular shape, which can be deduced from the fact
thatP = 1 withBP = 6 and LP = |. Note here that Sb has 5 valence electrons of
its own, and that three more have been contributed to it by the charge on the
ion. Of the two possible shapes in Figure 9-16, the irregular octahedron (b) is
more likely, as may be deduced from the following considerations.
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Model (a) has 5 LP-BP repulsions at 90°,
5 BP-BP repulsions at 72°, and
5 BP-BP repulsions at 90°.
Model (b) has 2 LP-BP repulsions at 72°,
2 LP-BPrepulsions at 90°,
3 BP-BPrepulsions at 72°, and
8 BP-BP repulsions at 90°.

The difference between the two models comes down to this:

Model (a) has 3 LP-BP repulsions at 90° and
2 BP-BPrepulsions at 72°;

Model (b) has 2 LP-BP repulsions at 72° and
3 BP-BPrepulsions at 90°.

Qualitatively, the difference is that model (a) has a partial LP-BP repulsion at
90°, and model (b) has a partial BP-BP repulsion at 90°. Because the LP-BP
repulsion is greater, we choose model (b).

TaF{~ is a molecule that illustrates the situation for P = 8 and BP = 8. The
electron-pair and molecular geometries are the same, corresponding to a square
antiprism. A [J-antiprism can be thought of as two [I-based pyramids, apex-to-
apex, with the central atom (Ta in this case) located at the junction of the
apices, and the base edges not parallel. The simplest way to visualize this
structure is to imagine the central atom at the center of a cube, with the ligands
at the eight corners. Any two opposite faces can be thought of as the bases of
the two [I-based pyramids. Choose two opposite faces and then rotate one of
them 45° with respect to the other, keeping them parallel. The resulting figureis
a [J-antiprism in which the ligands (and therefore the bond pairs) are farthest
away from each other. Figure 9-17 illustrates the structure for TaFi . The

\‘/ B[\Sb/_,_————-—sr
/\ A

|5

@ (ft)

FIGURE 9-16
Two possible shapes of SbBr}
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FIGURE 9-17
Square antiprism molecule.

distorted dodecahedron that sometimes occurs for P 8 is too difficult to
illustrate in a clear manner, so we ignore it here.

Another consequence of the unequal repulsion between lone pairs and bond
pairs of electrons is the distortion of the molecule from the perfectly regular
geometric shapes we have discussed. In CCl,. the CI-C-CI angle is the tet-
rahedral value 109°28', as expected. In NH,, however, the H-N-H angle is only
106°45": the distortion is caused in part by the stronger .P-BP repulsion forcing
the H atoms closer together against a weaker BP-BP repulsion. The same effect
can be seen in

SnCl,, where the C1-Sn-Cl angle is less than 120°;

H,0, where the angle is only 104°27" (instead of 109°28'):

TeCl,, where the two apical Cl atoms are not quite linear with respect to Te,
and the two ClI atoms in the plane have a Cl-Te-CI angle of a little less
than 120°;

CIF4, where the T-shaped molecule has a bent cross to the T;

IF; molecule, where the | atom is slightly below the plane of the four F
atoms; and so on.

Not al of these distortion effects can be ascribed to differencesin LP-BP and
BP-BP repulsions. Some distortion is due to differences in electronegativity
between M and the ligands. If the two have equal electronegativity, then of
course the bond pairs are shared equally between M and L. If M is more
electronegative than L, however, the bond pairs will be held more closely to M.
But as they are drawn closer to M, the bond pairs also are drawn closer to each
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other and, in an effort to reduce this added repulsion, they tend to widen the
angle between them. The net result is a distortion. Compare the following sets
of bond angles, which reflect both the differences in LP-BP and BP-BP repul-
sions, and the differencesin electronegativity between M and L (H-M-H angles
are cited):

NH,, 106°45'; PH,, 93°50'; AsHg, 91°35'; SbH,, 91°30':
H,0, 104°27": H,S, 92°20'.

If the ligands are more electronegative than M, then the bond pairs are drawn
farther from M and away from each other, a situation that assists the lone pair
in making the L-M-L angle smaller as it operates against this weaker BP-BP
repulsion. For example, compare NH; (106°45") with NF; (102°9'), and H,O
(104°27") with OF, (101°30").

Multiple Bonds

If you were asked to draw the electron-dot formula for CH,O you might be
tempted to draw the structure shown in Figure 9-18(a), which would have the
A-coplanar structure shown in Figure 9-18(b). This is an incorrect structure

@) (b)

FIGURE 9-18
An incorrect structure for CH,O.

because the predicted C-O distance is 1.43 A (compared to the observed value
of 1.23 A), and because C does not obey the octet rule in this structure, whereas
it could satisfy the rule by forming a double bond with O. One of the lone pairs
on O can become a bond pair, as shown in Figure 9-19(a). The four electronsin
the C=0 double bond count as belonging to both C and O, so O still obeys the
octet rule and now C does also. According to prediction rule #2(b) (p 119), a
multiple bond counts as only one pair of electrons, so the structure in Figure
9-19(b) is still A-coplanar (not tetrahedral), but the C=0 distance is now pre-
dicted to be 1.22 A, in close agreement with fact.
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FIGURE9-19
A correct structure for CH,0.

In general, you should always follow the procedurejust described when the
central atom does not obey the octet rule and the ligands are able to form
multiple bonds (see p 121).

PROPERTIES OF MOLECULAR ORBITALS

Resonance

A surprising thing is noted when we examine interatomic distances for certain

ions and molecules, such as CO% ", NO,, or C;H, If we draw the usual
electron-dot formulas for these, we get the structures shown in Figure 9-20.
Using Table 9-1, we would say that in CO#~ there are one C=0 bond of length
1.22 A and two C-O bonds of length 1.43 A; in NO;. one N-O bond of length
1.36 A and one N=O bond of length 1.15 A; in C;H. three C-C bonds of length
154 A and three C=C bonds of length 1.34 A. In aciualfact, al the bond lengths
in any one of these three molecules are the same; for CO? all lengths are 1.30

A; for NO; they are 1.24 A; and for C;H,they are 1.40 A. These values are very
close to the weighted averages of single and double bond lengths. It appears
that, in such molecules or ions, there is no real preference for single or double

FIGURE9-20
Electron-dot formulas.
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bonds to be located between any specific atoms. How should this situation be
described? Pauling suggested that the actual state of the molecule is a resonance
hybrid of all the separate forms that can be written in the classical way. The
principal resonance forms for our three examples would be those shown in
Figure 9-21.

It must be emphasized that none of these resonance forms actually exists, but
the superposition of all of them for a given molecule serves as a good represen-
tation, and shows that each bond possesses both single-bond and double-bond
characteristics.

o, 1 [o ] [o
co | c=o| | c—o

FIGURE 9-21
Resonance forms.

A Molecular Orbital Description (Sigma Bonds)

So far we have looked at molecular orbitalsinasimplified way as electron pairs
that try to seek locations of minimum potential energy. Now that double bonds
are under consideration, it will pay us to examine in greater detail the charac-
teristics of both atomic and molecular orbitals. You recall that an atomic orbital
is a volume element oriented with respect to the nucleus of the atom where
there is a high probability of finding (at the /12057 ) two electrons that are identi-
cal in quantum numbers except for direction of spin. The orbital of each type of
electron (s, p, ¢, etc.) has a characteristic shape and orientation.

One important type ofmolecular orbital is regarded as being formed from the
"end-overlap" of two atomic orbitals (one from each atom). If two electrons (of
opposite spin) fill this molecular orbital (one from each atom, or two from one
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FIGURE 9-22
HCI molecular orbital.

and none from the other), a bond will be formed. In HCI the molecular orbital
could be regarded as the end-overlap of the half-filled s orbital of H with the one
half-filled p orbital of Cl (Figure 9-22). In Id, the molecular orbital is the
end-overlap of two half-filled p orbitals (Figure 9-23). In making an NH ion

FIGURE 9-23
ICl molecular orbital.

from H* and NH,. the new bond is the molecular orbital resulting from the
end-overlap of the empty s orbital of H" and the filled (lone-pair) molecular
orbital of NH, (Figure 9-24). These end-overlap molecular orbitals are called cr
(sigma) bonds.

- - @ N N

FIGURE 9-24
NH; molecular orbital.

Hybridization

There is an alternative to resonance as the explanation of why all the bond
lengths are the same in molecules such as CO% ., NO,, and C Hy; it is known as
hybridization of atomic orbitals to give molecular orbitals. Basically, hybridiza-
tion is a mathematical operation that considers molecular orbitals to be made of
atomic orbitals in whatever way is needed to give the minimum potential energy
(the minimum electron-pair repulsion and the most stable arrangement of
atoms). The mathematical result leads to a definite geometrical arrangement of
molecular orbitals that are identical from the standpoint of bond length and
bond strength. We shall illustrate the method qualitatively by showing, for a
given atom, three different ways to hybridize its v and p atomic orbitals of the
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same principal quantum number to give three different kinds of molecular orbi-
tals. A basic principle involved in al hybridization processes is that you will
always get the same number of molecular orbitals as the number of atomic
orbitals that were used. At the moment we shall hybridize atomic orbitals
without regard to the element involved or the number of electrons that are
available.

In each of the following hybridizations we shall deal with one s and threep
atomic orbitals. When we don't hybridize all of them, we must consider how the
resulting molecular orbitals are related to the atomic orbitals we don't use.

I. Hybridize one s and three p atomic orbitals to get
(&) four identical sp* tetrahedral molecular orbitals

2. Hybridize one s and two p atomic orbitals to get
(@) three identical sp? trigonal (/A -coplanar) molecular orbitals, and
(b) one atomic p orbital perpendicular to the A plane.

3. Hybridize one s and one p atomic orbital to get
(a) two identical sp digonal (linear) molecular orbitals, and
(b) two mutually perpendicular atomic p orbitals that are perpendicul ar
to the line of molecular orbitals.

If you refer back to the earlier figures in this chapter, you can see that,
whenever P == 4 (corresponding to tetrahedral electron-pair geometry), you
were actually using sp ° molecular orbitals of the central atom to hold lone pairs
and/or to end-overlap with ligand orbitals so as to make the molecular orbitals
needed to hold bond pairs. Similarly, A-coplanar electron-pair geometry uses
sp> molecular orbitals, and linear electron-pair geometry uses sp molecular
orbitals. These orbitals often are described assp®. sp-, and sp without further
description because the symbolism itself implies hybridization (and the number
and kind of each atomic orbital used) as well as the geometry involved. These
are summarized in Table 9-2.

The other electron-pair geometries that are listed in Table 9-2 are aso related
to specific hybrid molecular orbitals, but they are more complicated because
they involve ¢ orbitals as well as s andp. In every case, the s and p orbitals are
of the same principal quantum number. However, if the / symbol is listed first
(as in «*p?), the d orbitals used in hybridization are of principal quantum
number one less than that of s andp. If thed symbol is listed at the end (as in
spl?). al orbitals are of the same principal quantum number.

A Molecular Orbital Description (Pi Bonds)

When the unhybridized p atomic orbitals that are associated with sp- and sp
molecular orbitals contain no electrons, we need not worry about them. But
every time you draw an electron-dot formula that involves a double or a triple
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bond, you must take these atomic p orbitals into account because they contain
electrons. Let's say that M and L form a o bond by the end-overlap of two sp*
molecular orbitals (one from each atom). This pair of electrons will be localized
between M and L. Now, if the A planes of M and L both lie in the same plane,
the p orbitals that stick out perpendicularly above and below each of the A
planes will side-overlap and then merge to form acd/c/ocalized molecular orbital
consisting of two "clouds" parallel to the plane, one above and one below
(Figure 9-25). It is a delocalized orbital (called a = orbital) because, if any
electrons are in this orbital, they will be spread out or delocalized with time
over both M and L; they will no longer be localized on either of the atoms as p
electrons. Any double bond can be considered as composed of one cr bond and
one 7 bond—the cr bond localized between M and L, and the = bond de-
localized with one electron on each side of the plane. The atoms at both ends of
a double bond must use sp- orbitals.

A triple bond has an analogous interpretation. Using N, (: N N :) as an
example, first imagine the end-overlap of one sp digonal orbital from each N
atom to form a abond localized between the atoms. Then, orient the pairs of
atomic p orbitals on each atom so that they are parallel. These p orbitals will
side-overlap and merge to give two sets of delocalized - orbitals mutually
perpendicular to each other (Figure 9-26). Each N atom will hold its lone pair in
the sp orbital that isn't used to make the cr bond, and the remaining four
electrons will be located in the 7 clouds to form = bonds, with one electron in
each of the four delocalized clouds. Any triple bond can be considered as being
composed of one localized cr bond and two delocalized 7 bonds. The atoms at
both ends of a triple bond must use sp orbitals.

M

Side view

Top view

FIGURE 9-25
Double bond.
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FIGURE 9-26
Triple bond.

Because 7 bonds always are oriented parallel to the cr bonds with which they
are associated, it follows that the molecular shape will be determined solely by
the number of cr bonds that the central atom has. It is understandable, there-
fore, why predictive rule #2(b) on p 119 states that only two electrons of a
multiple bond can be used to calculate the number of electron pairs around the
central atom.

In those molecules or ions where resonance is involved (see Figure 9-21)—in
CO37, for example—it isn't possible to say that one oxygen atom will be in-
volved in a double bond and the other two in singles. We must treat al of them
the same way, as though they all participate in double-bond formation. In other
words, all of the O atoms must use sp2 A-coplanar orbitals, using one to end-
overlap with an sp* A-coplanar orbital from C to form a cr bond, and using the
other two sp* orbitals to hold lone pairs. Because al four atoms are using sp
orbitals, each one has an atomic p orbital perpendicular to the plane that will
side-overlap with the others and merge into two gigantic 77 clouds parallel to the
plane of the CO%~, one above the plane and one below (Figure 9-27). The planar
CO% ion will be like the hamburger patty between two halves of a hamburger
bun (the 7 clouds). The CO3~ ion has 24 valence electrons that must be ac-

\ / /
0] \‘ 4
-0, Plane of atoms )
m bond

Coplanar side-overlap = molecular orbital
of 4 atomic p orbitals with 3 electrons above
plane and 3 below

Top view Side view
(bottom view the same)

FIGURE 9-27
The TT molecular orbital of CO7 .
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FIGURE 9-28
The 77 molecular orbital of NO,

counted for (Figure 9-20). Six will be involved in the three C-O o bonds, 12 will
be held as lone pairs in sp - orbitals of the O atoms, and the remaining six will be
delocalized in the 7 bond (three below the plane and three above).

Likewise for the NO; ion, the two O atoms must be treated the same way as
participating in double-bond formation. All three atoms must use sp- orbitals,
with end-overlap between each O and N to form cr bonds. And of course the
three p orbitals that rise perpendicularly from their common plane will side-
overlap and merge to give a delocalized split-banana-shaped 7 molecular orbi-
tal, with one half-banana above the plane of the molecule and the other half
below (Figure 9-28). Four of the 18 valence electrons are held in the two cr
bonds, 10 are held as five lone pairs in the sp- orbitals (two on each O, and one
on the N), and the remaining four are delocalized over the length of the mole-
cule in the 7 bond (two above the plane and two below).

In the case of C;H,, every C atom must use sp - orbitals because each one is at
the end of a double bond (see Figure 9-21). Each C will use two of itssp-
orbitals to end-overlap with its neighboring C atoms to make cr bonds, and its
third sp- orbital will be used to end-overlap with an s orbital of H to make a
third cr bond. In addition, each C atom has ap atomic orbital that stands
perpendicular to the plane of the molecule. These six atomic orbitals will side-
overlap and merge to form a massive = orbital, again like a hamburger bun,
with the planar C ;H, hamburger patty sandwiched in between (Figure 9-29). In
accounting for the 30 valence electrons (Figure 9-20), we see that 24 of them are
used to form 12 cr bonds (six C-C cr bonds, and six C-H) and the remaining six
are delocalized over the entire molecule in the massive 77 molecular orbital
(three above the plane and three below).

Some additional examples of double-bonded molecules are shown in Figure
9-30. You should realize that the NO, and O, molecules involve resonance (and
therefore 7bonds delocalized over the entire ength of the molecules), for there
is no reason to believe that one bond in each should be single and the other
double. Both bond lengths in each molecule will be equal.

The N,O molecule illustrates the situation that exists when one atom is
involved in two double bonds, like the central N atom here. In order for the
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Coplanar side-overlap 77 molecular orbital
of 6 atomic p orbitals with 3 electrons above
plane and 3 below
Top view Side view
(bottom view the same)
FIGURE 9-29

The 7 molecular orbital of C;H;

central N atom to provide ap orbital for side-overlap for both the O and the
other N, it will be necessary for it to use sp digonal orbitals. The sp orbitals will
be used to make o bonds, while the two remaining p orbitals will merge to make
7 bonds.

The NO, molecule illustrates what must be done with a single unpaired
electron on the central atom [see predictive rule #2(c), p 119]. It must occupy a
molecular orbital but, unlike the usual situation, the orbital won't befilled. In

N=N-=—o:
0 n- o Linear
Angular
0 0
(0]
[l Angular
c— ¢l
\ H H
Cl \
Tetrahedral cC=¢C
/ \
H H
Coplanar
H H
H H
c—C~
H H

Tetrahedral about each C

FIGURE 9-30
Examples of molecules with various bond characteristics.
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all respects the molecule will be identical to the NO; ion illustrated in Figure
9-28, except that the sp* orbital on N that holds a lone pair in NO; will have
only asingleelectroninNO,. This single electron will exert arepulsive effect on
the other bond pairs, but much less so than a complete lone pair. You would
expect the O-N-O angle (134° by experiment) in NO, to be greater than the
O-N-0 angle (115° by experiment) in NO;, for example. You can also see why
two NO, molecules will so readily react with each other to form N,O,: the two
half-filled lone-pair orbitals will end-overlap to form an electron pair o bond
between the two N atoms. In addition, the 7 clouds of each NO, will side-
overlap to make one gigantic = cloud delocalized over the whole plane of the
N,O, molecule.

Finally, we might comment on one other interesting property that is asso-
ciated with a double or triple bond. The = bond keeps the two halves of a
double bond from freely rotating about the o bond axis that joins them. This
property i's of the utmost importance in explaining the shape and properties of
many organic compounds. In C,H,, the two =CH, groups are unable to rotate
freely with respect to each other. In C,H, the two —CH , groups tend to arrange
themselves to give an end-on view as in Figure 9-31, with each H atom at
maximum possible distance from the others. The activation energy for rotation
about the C-C bond is only 3 kcal/mole, so that rotation occurs relatively
easily.

FIGURE 9-31
End-on view of C.H,

Complex lons

The complex ions that are studied in Chapter 25 consist of a metal ion acting as
the “central atom," to which several ligands are attached. The metal ions
frequently are transition metal ‘ions, usually characterized as having lost their
4s- (or 55° or 6s°) electrons and having a variable number of < electrons in the
outermost (3rd, 4th, or.5th) shell. In these complex ions, the pairs of electrons
by which the ligands are attached are all furnished by the ligands (thus each
ligand must possess at |east one lone pair before reacting), and there are no lone
pairs on the central ion. Thus, the number P of electron pairs around the
transition metal ion'isjust equal to the number of ligands attached: the molecu-
lar geometry is the same as the electron-pair geometry.

Although it makes no difference to the shape of the ion whether «/*p*orspd*
orbitals are used (it is octahedral in either case), the properties of the resulting
two ions may be enormously different (color, paramagnetic susceptibility. and
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FIGURE 9-32
Molecular shapes of ZnCl3 and Co(NH,)}".

strength of metal-ligand bond, for example). Just which of the two hybrid
orbitals is used will be determined by how many d electrons the central ion
possesses, and by the strength of the ligand field. Consult your textbook for the
details. One major exception may occur for those complex ions that have only
four ligands. If the central metal ion has ecight < electrons, it is very likely that
the four ligands will be arranged in aJ-coplanar shape (not tetrahedral), using
dsp? hybrid orbitals. Some ions with ecight «/ electrons in their outermost shells
are Ni**, pd**, and Pt**.

If you seek to sketch the shape of the ions ZnCl13 and Co(NH,)#". you must
first recognize that Zn** and Co®* are transition metal ions, and that ZnCl?
and Co(NHy)¢" are complex ions. Once this is established, you note that Zn*"
has four ligands and therefore four electron pairs with tetrahedral geometry,
with each bond pair coming from a chloride ion,

(l’

You aso note that Co** has six ligands and therefore six electron pairs with octa-
hedral geometry, with each bond pair coming from the lone pair on the ammonia
molecule,
N
VRN
H H
H

Figure 9-32 shows the shapes of the complex ions.

PROBLEMS A

1. Sketch each of the following molecules or ions, and give approximate values
for bond angles, bond distances, and bond energies for those for which suffi-
cient data are given in Table 9-1.
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(a) CO, (1S, (k) NO,C1 (p) S,03
SiO} (g) NOJ (1) Mo(CN){~ (q) SbF?
SO3 (h) NOF (m) BrF, (r) N,O,

(d) XeF, (i) SeCl, (N) AIE} (s) SIOF,

(e) SO, Li) SiF; (0) OCN (t) BrF,
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(u) ICl,
(V)ASS]
(w) SO.CI,
(x) C4Hg
(y) C.H,CI
(2) (Si03),

PROBLEMS B

2. Sketch each of the following molecules or ions. and give approximate values
for bond angles..bond distances and bond energiesfor those for which sufficient

data are given in Table 9-1

(a) F.,O (H ClO, (k) POLE, (p) BrF,
(b) SO3%- (g) SnS; (1) XeF, (q) H.O,
(c) 10, (h) IF,0, (m) WF3 (r) SCN
(d) NO, (i) cocl, (n) HCN (s) 1,Br
() Ny (1) POF, (0) H, IO, (t) H,;BO,

(u) SO,
(v) I-
(W) C.H,
(x) Zrk:
(y) ALCH
(2) (PO3),
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Stoichiometry |. Calculations
Based on Formulas

A chemical formula tells the numbers and the kinds of atoms that make up a
molecule of a compound. Because each atom is an entity with a characteristic
mass, a formula also provides a means for computing the relative weights of
each kind of atom in a compound. Calculations based on the numbers and
masses of atoms in a compound, or the numbers and masses of molecules
participating in a reaction, are designated stoichiometric calculations. These
weight relationships are important because, although we may think of atoms
and molecules in terms of their interactions as structural units, we often must
deal with them in the lab in terms of their masses—with the analytical balance.
In this chapter, we consider the Stoichiometry of chemical formulas. In follow-
ing chapters, we look at the stoichiometric relationsinvolved in reactionsand in
solutions.

WEIGHTS OF ATOMS AND MOLECULES

The masses of the atoms are the basis for all stoichiometric calculations. Long
before the actual masses of atoms were known, a relativ ¢ scale of masses, called
the atomic weightscale, was devised. Since 1961, this relative scale has been
based on the assignment of the value 12.00000 to the most common isotope of
carbon. The table on the inside back cover lists approximate values of the
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relative atomic masses. Because these relative masses represent ratios, they are
dimensionless. The atomic masses of the different elements can be expressed in
various units, but the ratios of the masses will always be the same as the ratios
of these relative masses.

With an established scale of relative atomic weights, it is simple to compute
the relative molecular weights on the same scale. All you have to do is take the
sum of the relative masses of the atoms that make up the molecule. Thus, the
relative molecular weight of H,SQ,is (2 X 1.0) + (1 X 32.1) + (4 X 16.0) = 98.1.
With more accurate values of the relative atomic weights, the value is found to
be 98.07. Regardless of the mass units used, the masses of the H atom, the
O, molecule, and the H,SO, molecule will stand in the ratio of
1.0079:31.9984:98.07.

Ever since instrumentation has been sophisticated enough to determine the
masses of individual atoms in an indirect fashion, it has been possible to have a
list ofabsolute values of the atomic masses. The mass of an atom is incredibly
small; expressed in grams, these values are cumbersome to use in day-to-day
work and conversation. In recent years, this difficulty has been surmounted by
using a special mass unit called a dalton (d): 1 d = 1.6604 x 10~* g. Thisunitis
chosen so that the mass of the most common isotope of the carbon atom equals
12.00000 d. Thus, the absolute atomic weight of H is 1.0079 d, and the absolute
molecular weights of O, and H,SO, are 31.9984 d and 98.07 d, respectively. The
absolute atomic and molecular weights expressed in daltons (sometimes called
the Dalton atomic and molecular weights) have the same numerical values as
the relative atomic and molecular weights, but they represent the ac tual masses
of the atoms and molecules involved; we can convert them to grams by multi-
plying by 1.6604 x 10-2* g/d.

THE MOLE

In the laboratory, we normally work with very large numbers of atoms or
molecules, usually with weights conveniently expressed in grams. Suppose we
have acertain weight of O, and another certain weight of H,SO,: if the ratio of
these two weights is 31.9984:98.07, we know that each weight contains the
same number of molecules (because the weight ratio is the same as that of
individual molecules from the relative molecular weights). It 1s convenient to
use the relative atomic weight scale with values expressed in grams. Thus, the
gram atomic weight of H is 1.0079 g; the gram molecular weight of O, is 31.9984
g; and the gram molecular weight of H,SO, 1s 98.07 g. These gram atomic or
molecular weights are also called mole i ¢ichrs. One mole weight of any sub-
stance must contain the same number of atoms or molecul es as one mole weight
of any other substance. This quantity is usually called one mole of the sub-
stance. Note that the same numerical scales are used for relative, Dalton, and
gram molecular weights; only the units are different.
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Relative Dalion Gram
Molecule molecular weights molecular weights molecular weights
H 1.0079 1.0079 d/atom 1.0079 g/mole
0, 31.9984 31.9984 d/molecule 31.9984 g/mole
H,S0, 98.07 98.07 d/molecule 98.07 g/mole

If a chemical formula states that one molecule of oxygen will react with two
molecules of hydrogen to form two molecules of water, we can immediately
conclude that one mole of oxygen will react with two moles of hydrogen to form
two moles of water. T hus we can readily determine the proportions of masses in
grams that will react on the laboratory scale.

The Dalton scale is particularly useful when describing enormous and com-
plicated biological structures, such as chromosomes, virus, mitochondria, and
ribosomes. The mass of such a structure can be stated in daltons, even though
the quantity of material available in the laboratory would normally be only a
very tiny fraction of a mole.

AVOGADRO'S NUMBER

We have noted that one mole of a substance always contains a certain number
of molecules (or atoms), regardless of the substance involved. This number is
called Avogadro’s number (in honor of the scientist who first suggested the
concept, long before the value of the number could be determined). Using the
definition of the dalton and the scale of Dalton atomic (or molecular) weights,
we can readily determine the value of Avogadro's number. For example, we
have seen that the absolute molecular weight of O, is 31.9984 d/molecule.
Therefore,

31.9984 g/mole

— 1023
37,9984 dimolecule x 1.6604 x 10-Fgid 00225 X 10" molecules/mole

This value, of course, was determined experimentally and was used to define
the dalton; we have simply reversed that computation here. The value of Avo-
gadro's number, 6.023 x 102 molecules (or atoms) per mole, represents the
fantastically large number of molecules you are dealing with every time you use
agram molecular weight (mole weight) of a substance. Note that Avogadro's
number is numerically equal to the reciprocal of the dalton expressed in grams.

The term "mole" commonly 1s used to represent the number of molecules (or
atoms) in a quantity of material; that is, one mole of molecules = Avogadro's
number of molecules. In this sense, a mole is a dimensionless number, just as a
dozen means 12. For example, you could talk about a mole of caterpillars,
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meaning 6.023 x 1023 caterpillars. However, the number is seldom useful ex-
cept in talking about molecules or atoms. The metric prefixes commonly are
used to give such units as millimoles, nanomoles, or picomoles.

PROBLEM:
How many molecules are there in 20.0 g of benzene, CHg?

SOLUTION:

First find how many moles of CgHg there are in 20.0 g, then use Avogadro's
number to find the number of molecules.

Mole weight of C4H; = (6 x 12.0 g/mole) + (6 X 1.0 g/mole) = 78.0 g/mole

an N

-, 8
78.0 g/mole

Moles of C4Hg = = 0.256 moles

Number of molecules = (0.256 moles)(6.023 x 10°* molecules/mole)
= 1.54 x 10*® molecules

PERCENTAGE COMPOSITION

A chemical formula may be used to compute the percentage composition of a

compound; that is, the percentage by weight of each type of atom in the com-
pound.

PROBLEM:
Calculate the percentages of oxygen and hydrogen in water, H,O.

SOLUTION:

The formula shows that 1 mole of H,O contains 2 moles of H and 1 mole of O. The
mole weight is (2 x 1.0 g/mole) + (1 X 16.0g/mole) = 18.0 g/mole. Thiscalculation
shows that there are 2.0 g H and 16.0 g O in 18.0 g H,O. Therefore,

20¢g

% H = 100 < 101%
o= 100 = s39%
18.0 g

PROBLEM:
Compute the percentages of K, Fe, C, N, and H,O in K,Fe(CN);-3H,O crystals.
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SOLUTION:

The dot in the formula indicates that 3 moles of water are combined with 1 mole of
K Fe(CN)gin the crystalline compound. The mole weight is (4 x 39.1 g/mole) + (I
x 55.8 g/mole) + (6 x 12.0 g/mole) + (6 x [4.0 gmole) + (3 x 18.0 g/mole) =
422.2 g/mole. Each of these weights per mole divided by the weight of a mole will
give the percentage, as follows.

4 ngx

= * =
%K 4222 g 100 = 37.0%
5. g
%Fe = X 100 = 13.2%
4222 g
_6Xx12.0g _
%C 2222 x 100 = 17.1%
_ 6x 140¢g — 0
TN 1292 x 100= 19.9%
3x180¢g
= 12
%H0 = 4222 x 100 = 12.8%

CALCULATION OF FORMULAS FROM CHEMICAL ANALYSIS

When a new chemical compound is prepared, we do not know its formula. To
establish the formula, we find by experiment the weights of the various atoms in
the compound, and from these weights we compute the relative number of each
kind of atom in the molecule. The formulaso computed is the simplest formul a,
not necessarily the true one. It is therefore called the empirical formula. For
example, we would find the empirical formula for benzene to be CH, whereas
thetrueformulais C4Hg. To get thetrueformulafrom the empirical formula, we
must also be able to determine the molecular weight. (This is accomplished by
methods that we discuss later.)

PROBLEM:

A sample of chromium weighing 0.1600 g is heated with an excess of sulfur in a
covered crucible. After the reaction is complete, the unused sulfur is vaporized by
heating and allowed to burn away. The cooled residue remaining in the crucible
weighs 0.3082 g. Find the empirical formula of the chromium-sulfur compound
that formed.

SOLUTION:

This is a logical place to use Dalton atomic weights, because what we want to
know is the number of atoms in a molecule. Instead of using grams, use daltons
(d). Think of this experiment as having been performed with 1600 d of Cr to obtain
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3082 d of residue; the increase in weight was due to 3082 d - 1600d = 1482d of S
combining with Cr. Then use the relative atomic weight scale in d/atom to get

. 1600d
atoms of Crin 1600d =550 dlaiom 30.8 atoms Cr
: . 14Rd
atoms of Sin 1482d = 321 diaiom 46.2 atoms S

We could write the formulaas Crs, ¢S 46.2, but what we want is the simples! formula.
The proportions will be the same if we just divide each of the numbers (subscripts)
by the smallest, to get

CrMS@ - Crsl,s

108 308

This formula is unacceptable because it erroneously implies that we can split
atoms in chemical reactions. Therefore we multiply by 2 to get Cr,S;, the correct
empirical formula.

We could have thought of the experiment as being done with 0.1600 d of Cr and
0.1482 d of S; the final result would have been the same. By taking the larger
quantities we avoided the uneasy feeling you might have had when it looked as if
fractions of atoms were combining (0.00308 atoms of Cr and 0.00462 atoms of S).

PROBLEM:
A compound contains 90.6% Pb and 9.4% O by weight. Find the empirical
formula.

SOLUTION:

The results of analysis usually are given in percentages of the constituents. not in
terms of the amounts actually weighed (as in the last problem). This permits
comparison of results from different experiments. You recall that "percent"
means "per 100." We can say, then, that if we have 100 g of the compound, 90.6 g
isPband 9.4gis O. We can also say that if we have 100 d of compound, 90.6 d is Pb
and 9.4dis O. Using Dalton atomic weights we can easily find the number of atoms
in 100 d of compound, as follows.

: 90.6 d ,
atomsof Pbin90.6d = 207 5 djatom 0.437 atoms Pb
atoms of O in 94d—794d = 0.587 atoms O

Y 716.0d/atom

Asin the previous problem, we divide each of the numbers of atoms by the smaller
number to give
PbuL:O@‘: S Pbol.34
We know that the subscripts must be simple whole numbers, a situation readily
obtained by multiplyingthrough by 3 to give Pb,0,, the correct empirical formula.
Frequently the fractional numbers that must be multiplied through by simple
integers do not yield exactly whole numbers (for example, 3 x 1.34 = 4.02, not



150 Stoichiometry | Calculations Based on Formulas

4 00) Do not worry about this Instead, realize that there will always be a little
experimental error that you will have to allow for Normally, look for relatively
simple numbers for subscripts

PROBLEM:

Many crystalline compounds contain water of crystallization that 1s driven off
when the compound 1s heated The loss of weight in heating can be used to deter-
mine the formula For example, a hydrate of barium chloride, BaCl, vH,O,
weighing 1 222 g 1s heated until dl the combined water 1s expelled The dry pow-
der remaining weighs 1 042 g Compute the formula for the hydrate

SOLUTION:
In solving this problem we seek the value of \ whose units must be moles of H,O
per mole of BaCl, Our objective, therefore, 1s to find the number of moles of each

in the given sample The 1 042 g residue 1s anhydrous BaCl, and the loss 1n weight
1s H,O

Weight of H,O = 1222 g- 10429- 0 180 gH,0

From these weights we calculate the moles

1 042 g BaCl
Moles of BaCl, = 8 B2~ 000500 moles BaCl,
208 4 & Ba%l
mole BaCl,
N
Molesof HO = -8 2 = 00100 moles H,0
g H,0) _
mole H,0

We obtain v, the moles of H,O per mole of BaCl,, by dividing the moles of H,O by
the moles of BaCl, to which the water 1s attached to give

= 0 0100 moles H,O _  moles H,O
~ 000500 moles BaCl, ~ “ mole BaCl,

and the formula for the hydrate 1s BaCl, 2H,O

DETERMINATION OF ATOMIC WEIGHTS

There 1s a simple way by which you can find the approximate atomic weight of
an element It 1s described on pp 211-212 With this method, you determine the
specific heat of the element experimentally, then divide 1t into 6 2 (using the rule
of Dulong and Petit), the result 1s the approximate atomic weight. Even if you
didn't know the name of the element, you could use this approximate value
along with an accurate chemical analysis to find an accurate value of the atomic
weight
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PROBLEM-
From a specific heat measurement, the approximate atomic weight of a metal (M)
1s found to be 135 A 0 2341 g sample of M 15 heated to constant weight in air to
convert it to the oxide The weight of the residue 1s 0 2745 g Find the true atomic
weight of the metal (and therefore 1ts identity), and determine the formula of the
metal oxide

SOLUTION:

Using the approximate atomic weight, we can try to find the empirical formula for
the metal oxide We can say that 2341 d of M combine with 2745 d - 2341 d = 404
d of O The number of atoms of each 1s

2341d
atoms of M =135 dlatom 17 3 atoms of M
_404d
atoms of O = 16 d/atom - 25 3 atoms of O

from which we derive the empirical formula to be

Mi7305) = M ,O_ = MO, , = M0,

173 3

We find that our appioyunarc atomic weight value yields a formula of M,0, ..
which we know cannot be correct We aso know that M,,0,, 1s unreasonable
What we perceive 1s that the formula s undoubtedly M,0; and that the apparent
error 15 undoubtedly caused by the approximate atomic weight Assuming that
M,0 ; 1s correct and that the analysis 1s good, we can calculate the coriect atomic
weight (X) as follows

) 024l e 2 x X g/mole
wt fraction of Mn MO = 5 )l " @ X X @mole) + (3 X 1609 mole)
2X
= —_— = 5
2X + 480 0853
X = 0 853X+ (0 853)(24 0)
(0 853)(24 0) q
X = - 139
1-08s3 mole

The element must be lanthanum—not cesium o1 barium as seemed likely from the
approximate atomic weight This 15 further confirmed by the formula which
would have been Cs,0 for Cs 01 BaO for Ba La,, agrees with the fact that La
has a valence of +3

ISOTOPES AND ATOMIC WEIGHT

There 1s the implication in the first part of this chapter that all of the atoms of a
given element are the same and have the same mass Although their electronic
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structures and reactivities are the same, their masses actually may vary. These
different mass forms are called isotopes. It is because the percentage of each
isotope of an element is always the same throughout nature that the mass of
each atom of that element appears to be the same for all. The mass spectrome-
ter provides a means of accurately finding the percentage of each isotope and its
actual mass. For carbon, for example, two isotopes are found: 98.892% of one
isotope whose mass is 12.00000 d/atom, and 1.108% of the other whose mass is
13.00335 d/atom. If we should take a million carbon atoms at random, then
988,920 of them would each weigh 12.00000 d and 11,080 of them would each
weigh 13.00335 d. The total weight would be

(988,920 atoms)( 12.00000 d/atom) 11,867,040 d
(11,080 atoms)(13.00335 d/atom) 144,080 d
Total weight of 10¢ atoms = 12,011,120 d

12,011,170 d _ d
106 atoms 12,01112 atom

Average weight of one atom =

This average weight is the weight that ¢/l carbon atoms appear to have as they
are dealt with by chemists. The average atomic weights for all the elements have
been determined 1n a similar way, and it is these averages that are listed in the
relative atomic weight scale inside the back cover.

PROBLEMS A

1 Find the percentage composition of (the percentage by weight of each element
i) each of the following compounds

(@) N,O (g) Na,S,0;, 5H,0

(b) NO (h) Ca(CN),

(C)NO, (1) (NH,CO,4

(d) Na,SO, () UO,(NO,), 6H,0

(e) Na,S,04 (k) Penicillin, C,¢H 0, NS

(f) Na,SO, 10H,0
2 What s the weight of 1 00 mole of each compound in Problem 1'

3 How many moles are in 1 00 Ib of each compound in Problem 1

4 Find the number of molecules in
(@ 250gH,0
(b) 1.00 oz of sugar, C,,H,,0,
(c) 1 00 microgram of NH,
(d) 5 00 ml of CL1, whose density 1s 1 594 g/ml

Note Problems concerning the determination of approximate atomic weights by the rule of
Dulong and Petit may be found in Chapter 14
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(¢) An aluminum rod 20.0 cm long and 1.00 cm in diameter. The density of
aluminum is 2.70 g/ml.

In Friedrich Wahler's Grundriss der Chemie, published in 1823. the atomic
weight of oxygen is given as 100. On this basis calculate the molecular weight
of NH,Cl.

From the following analytical results (percentage by weight), determine the
empirical formulas for the compounds analyzed.

() 77.7% Fe, 22.3% O (f) 92.4% C, 7.6% H

(b) 70.0% Fe, 30.0% O (g) 75.0% C, 25.0% H

(c) 72.4% Fe, 27.6% O (h) 21.8% Mg, 27.9%P. 50.3% O

(d) 40.2% K. 26.9% Cr, 32.9% O (i) 66.8% Ag, 15.9% V, [7.3% O

(e) 26.6% K, 35.4% Cr, 38.0% O (j) 52.8% Sn, 12.4% Fe, 16.0% C,
188% N

Weighed samples of the following hydrates are heated to drive off the water,
and then the cooled residues are weighed. From the data given, find the
formulas of the hydrates.:

(@ 0.69 g of CuSO,-xH,0 gave a residue of 0.445 g

(b) 0573 g of Hg(NOy), - vH,O gave a residue of 0.558 g

(c) 1.205 g of Pb(C;H;0,), - xH,O gave a residue of 1.032 g

(d) 0.809 g of CoCl, -.vH,0 gave a residue of 0.442 g

(e) 2.515 g of CaSO, xH,0 gave a residue of 1.990 g

. Weighed samples of the following metals are completely converted to other

compounds by heating them in the presence of other elements, and then
are reweighed to find the increase in weight. The excess of the nonmetal is
easily removed in each case. From the data given, find the formulas of the
compounds formed.

(a) 0.527 g of Cu gave a 0.659 g residue with S

(b) 0.273 g of Mg gave a 0.378 g residue with N,

(c) 0.406 g of Li gave a 0.465 g residue with H,

(d) 0.875 g of Al gave a 4.325 g residue with Cl,

(e) 0.219 g of La gave a 0.256 g residue with O,

. From a specific heat measurement, the approximate atomic weight of a metal

isfound to be 136. A 0.3167 g sample of this metal is heated to constant weight
in air to convert it to the oxide, yielding a residue that weighs 0.3890 g. Find
the true atomic weight of the metal.

The following values of isotopic atomic weights and abundances are obtained

with a mass spectrometer. Compute the chemical atomic weights for the

elements involved. The isotopic weights are in parentheses.

(a) For neon: 90.51% (19.99872). 0.28% (20.99963). and 9.21% (21.99844).

(b) For sulfur: 95.06% (31.98085). 0.74% (32.98000), 4.18% (33.97710), and
0.02% (35.97800).

. Itisfound experimentally that when a metal M is heated in chlorine gas, 0.540

g of M gives 2.67 g of metal chloride. The formula of the chloride is not
known.
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(a) Compute possible values of the atomic weight of M, for each of the follow-
ing formulas: MCl, MCl,, MCl;, MCl,.

(b) It is found by other methods that the atomic weight of M is about 27.
Which of the above formulas is the correct one?

. A metal forms two different chlorides. Analysis shows one to be 54.1% Cl and

the other to be 64.4% Cl by weight. What are the possible values of the atomic
weight of the metal?

13. An organic compound containing C, H, O, and S is subjected to two analytical
procedures. When a 9.33 mg sample is burned, it gives 19.50 mg of CO, and
3.99 mg of H,0O. A separate 11.05 mg sample is fused with Na,O,, and the
resulting sulfate is precipitated as BaSO,. which (when washed and dried)
weighs 20.4 mg. The amount of oxygen in the original sample is obtained by
difference. Determine the empirical formula of this compound.

PROBLEMS B

14. Find the percentage composition of (the percentage by weight of each element

in) each of the following compounds.

(a) NH; (9) (NH,.CrO,

(b) N,H, (h) CaCN,

(c) HNy (i) PtP,0,

(d) Zn(NOy,), () BiONO,-H,0O

(e) Zn(NOy), (k) Streptomycin, C,Hy0 )N,
(f) Zn(NO,),-6H,0

15. What is the weight of 1.00 mole of each compound in Problem i4?

16. How many moles are in 1.00 Ib of each compound in Problem 14?

17. Determine the number of molecules in
(a) 50.0 g of mercury
(b) 0.500 Ib of chloroform, CHCl,

(c) 1.00 nanogram of HC1
(d) 25.0 ml of benzene, C¢H,, whose density is 0.879 g/ml
(e) acopper bar 1" x 2" x 24". The density of copper is 8.92 g/ml.

18. From the following analytical results (percentage by weight), determine the

empirical formulas for the compounds analyzed.
(a) 42.9% C, 57.1% O (f) 32.4% Na, 22.6% S, 45.0% 0
(b) 27.3% C, 72.7% O (9) 79.3% Ti, 9.9% V, 108% O
(c) 53.0% C, 47.0% O (h) 25.8% P, 26.7% S, 47.5% F
(d) 19.3% Na, 26.8% S, 53.9% O (i) 19.2% P, 2.5% H. 78.3% |
(e) 29.1% Na, 40.5% S, 30.4% O () 14.2% Ni, 61.3% |, 20.2% N,
4.3% H
19. Weighed samples of the following hydrates are heated to drive off the water,

and then the cooled residues are weighed. From the data given. find the
formulas of the hydrates.
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a) 0.520 g of NiSO, x H,O gave a residue of 0.306 g

b) 0.895 g of Mnl,-x H,O gave a residue of 0.726 g

c) 0.654 g of MgSO,-x H,O gave a residue of 0.320 g

d) 1.216 g of CdSO,-x H,O gave a residue of 0.988 g

(e) 0.783 g of KAl (SO,),-x H,O gave a residue of 0.426 g

(
(
(
(

20. Weighed samples of the following metals are completely converted to com-
pounds by heating them in the presence of the specified elements, and then are
reweighed to find the increase in weight. The excess of the nonmetal is easily
removed in each case. From the data given find the formulas of the com-
pounds formed.

(a) 0.753 g of Ca gave a 0.792 g residue with H,
(b) 0.631 g of Al gave a 1.750 g residue with S
(c) 0.137 g of Pb gave a 0.243 g residue with Br,
(d) 0.211 g of U gave a 0.249 g residue with O,
(e) 0.367 g of Co gave a 0.463 g residue with P

21. The following values of isotopic weights and abundances are obtained with a
mass spectrometer. Compute the chemical atomic weights for the elements
involved. The isotopic weights are in parentheses.

(8) For magnesium: 78.70% (23.98504), 10.13% (24.98584), and 11.17%
(25.98259).

(b) For titanium: 7.95% (45.9661), 7.75% (46.9647), 73.45% (47.9631), 5.51%
(48.9646), and 5 34% (49.9621).

22. A metal forms two different chlorides. Analysis shows one to be 40.3% metal
and the other to be 47.4% metal by weight. What are the possible values of the
atomic weight of the metal?

23. A sample of an organic compound containing C, H, and O, which weighs
12.13 mg, gives 30.6 mg of CO, and 5.36 mg of H,O in combustion. The
amount of oxygen in the original sample is obtained by difference. Determine
the empirical formula of this compound.

24. A 5.135 g sample of impure limestone (CaCQy,) yields 2.050 g of CO, (which
was absorbed in a soda-lime tube) when treated with an excess of acid. As-
suming that limestone is the only component that would yield CO,, calculate
the percentage purity of the limestone sample.
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In order for chemists to prepare and handle gases under avariety of conditions,
they must understand the relationships between the weight, volume, tempera-
ture, and pressure of a gas sample. Measurement of the first three of these
quantities is relatively straightforward. Because the measurement of pressure
can present some complications, we discuss it before we consider the interrela-
tionship of al four variables.

MEASUREMENT OF GAS PRESSURE

The most common laboratory instrument used to measure gas pressure is a
manometer, aglass U-tube partially filledwith aliquid (Figure 11-1). Mercury is
the most commonly used liquid, because it is fairly nonvolatile, chemically
inactive, and dense, and it does not dissolve gases or wet (adhere to) glass.
Because mercury does not wet glass, its meniscus will curve upward instead of
down, and its position is recorded as that of the horizontal plane tangent to the
top of the meniscus.

Figure 11-1illustratesthe measurement of gas pressure with amanometer. In
part (8), both sides of the mercury column are at the same pressure, and the
mercury level isthe same in both tubes. In part (b), the righthand tube has been
evacuated and, as aresult, the mercury has risen until the weight of the mer-
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U

(@) (b)

FIGURE 11-1
Mercury manometer. (a) Atmospheric pressure in both tubes. (b) Gas
pressure in flask, and vacuum in righthand tube.

cury column of height 2 exactly balances the gas pressure in the lefthand tube.
When one side of the manometer is open to the atmosphere and the other side is
evacuated, the instrument functions as a barometer; this could be the arrange-
ment in Figure 11-1(b), with stopcock 2 opened to the atmosphere. At sealevel
and a temperature of 0°C, the average barometric pressure corresponds to a
760.0 mm column of mercury. Such a pressure is designated as one atmosphere
(1 atm). It is necessary to specify the temperature when using a mercury man-
ometer, because mercury expands with an increase in temperature. Because of
the mercury expansion, alonger column of mercury will be needed at a higher
temperature in order to provide the same mass of mercury required to balance a
given gas pressure.

Various units are used to express gas pressures. Because pressure is defined
as force per unit area, one should employ units of force in measurements and
calculations. In practice, however, it is convenient to use units more directly
related to the measurements (such as the height of the mercury manometer
column), or to use mass units per unit area (such as g/cm? or Ib/in?). In scientific
work the commonly used unit is the rorr, defined as the pressure that will
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support a column of mercury exactly 1 mm in height at atemperature of 0°C. In
order to correct mercury manometer readings, H (in mm) taken at normal
laboratory temperatures (t in °C) to values P (in torr) that would have been
observed had the mercury temperature been 0°C, one can use the simple for-
mula

P = H[\ - af (11-1)
where a = 1.63 x 10-*deg~! if the scale is made of brass, or a = 1.72 x 10—*

deg! if the scale is etched on glass. Conversions from one set of pressure units
to others are illustrated in the following problems.

PROBLEM:
Express a pressure of 1 atm in terms of the following units: (a) grams per
cm?; (b) pounds per in% (c) dynes per cm?.

SOLUTION:

(& We assume that the mercury column of the barometer has a diameter of 0.60
cm. At a temperature of 0°C, the density of mercury 1s 13.60 g/ml, and the
column height corresponding to 1 atm is 76.00 cm

Cross-sectional area of column = (#)(0.30 c¢cm)?
Volume of mercury = (a0 30 cm)%76.00 cm)
Mass of mercury = ()(0.30 cm)*76.00 cm)(13.60 g/cm®)

1 am = MaSS _ (@H0-30-e14(76.00 cm)(13.60 g/cm?)
T area LEHO30-emm)?

1033 g/cm?

Note that the result does not depend on the cross-sectional area we assumed
for the mercury column, because this value cancels in the computation

(b) Toconvert 1 atm to pounds per in?, we use the approximate factors of 454 g/Ib
and 2.54 cm/in.

.y g cm Hb)
Pounds per in? = (1033 Cm) m) (4§4g

1 atm = 14.7 Ib/in?

(c) To convert 1 atm to dynes/cm?, multiply the mass in grams by the accelera-
tion due to gravity.

Dynes per cm? = (1033 g ) \980 7 dy‘gm)

1 atm = 1.013 x 10°dynes/cm?
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THE IDEAL GAS LAW

Every chemistry textbook describes the basic experiments that relate the vol-
ume of a gas sample to its pressure and Kelvin temperature. For a given quan-
tity of gas it may be shown, by combining Boyle's law (PV = k", at constant T)
and Charles' law (V = KT, at constant P), that

'?/ = k (a constant) (11-2)

This equation predicts the behavior of gases very well except at relatively
low temperatures and at relatively high pressures. Just how low the tempera-
ture must be or how high the pressure must be before serious deviations from
this equation are observed will vary from one gas to another. Under extreme
conditions, these equations cannot be used without correction for the volume
occupied by the molecules themselves or for the attractive forces between
neighboring molecules. For every gas, conditions exist under which the mole-
cules condense to a liquid that occupies a fairly incompressible volume. A
hypothetical gas, called anideal gas, would obey Equation 11-2 under al condi-
tions, and would possess zero volume at a temperature of 0 K. Most gases obey
this equation at normal temperatures and pressures.

Experiments have shown that one mole ofany gas (behaving ideally) at the
standard conditions of 760.0 torr (1 atm) and 273.2 K occupies a volume of 22.42
liters. These values make it possible to evaluate k for one mole of gas in
Equation 11-2:

9 4 liters\

a4 .

, _PV _ (760.0 torr) \ mole} _ ., torr liter

. == T 62.37 :
mole K

T ~ 2732 K

This constant, known as the "ideal gas constant,” is given the special symbol
R. Equation 11-2 would be written as PV = RT for one mole of gas; for the
general case of n moles, it becomes the important ideal gas equation,

PV = nRT (11-3)

When pressures are measured in atm, it is convenient to have the value of R
in these unitstoo. This may be computed as before, but substituting | atm for P
in Equation 11-2.

73.2 K = 0.08206— ek

( liters)
R = F¥ (1 aIm}2 mole liter atm
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Some other frequently used values of R are

_ cal
R = 1.987 mole K

eres

8 314 x 107 m01eK

The following problems illustrate a variety of applications of Equation 1 1-3
In each case theimportant thing to see1s how the given situation s related to the
ideal gaslaw Don't try to think of each problem as needing a special equation;
learn to reason from the one equation

PROBLEM:
What 1s the volume of one mole of any gas at room conditions (740 torr and 27°C)?
SOLUTION:
V= nRT
p

) (1 mole) (62 4 m) (300 K)

B 740 torr

= 25 3 liters
PROBLEM:

What will be the pressure exerted by any gas in a sealed vessel if its temperature 1s
raised to 200°C from 20°C, where 1ts pressure 1s 600 torr?

SOLUTION:
To avoid making abig production out of this problem, you need to realize that the
vessel 1s sealed Therefore, V and n are constant during this change, and Equation
11-3 can be written as

P, P, nR

— = -/ = —— = constant
T, T, \ %

By substituting the given conditions and solving for P,, we get

P,T, (600 torr)(473 K)
T, ~ (293 K)

P, = 969 torr

PROBLEM:
What 1s the density of NH, gas at 67°C and 800 torr?



fhe Ideal Gas Law 161

SOLUTION:
Wwog
Density = = Viter
. o g
Weight = w = (n moIes)\(V _—mole)
Therefore,

(3

Equation 11-3 can be rearranged to give
n_P
V ~ RT

and thus density of anv gas will be given by

PM
D ==
RT

Taking the specific gas NH; (M = 17.0 g/mole) at the given conditions, we have

(800 torr) (17 0 g,»)
\ mole / _0.641 -&_

( torr llter (340 K) liter

PROBLEM:

What is the molecular weight of a gas if a 0.0866 g sample in a 60.0 ml bulb has a
pressure of 400 torr a 20°C?

SOLUTION:
Because the number of moles of a substance can always be calculated from its
weight (w) and mole weight (M)by

_ wg
W g/mole
Equation 11-3 can be written as
PV = wRT
M

Rearranging and solving for M gives

torr liter
0.0866 (62 4 — \ 293 K)
o _ WRT ( ¢ p—— _ 66, _8
PV (400 torr)(0.060 liter) " mole
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If the empirical formulaof this compound had been found to be (CH,F),., this mole
weight determination could be used to find the rr«¢ formula. The mole weight of
the CH,F unit is 33.0. The true mole weight must be some integral multiple {x) of
33.0:

_ 660 _
Y7330 ~

The true formula is C,H,F,.

PROBLEM:
What is the apparent molecular weight of air, assuming that it contains 78%
nitrogen, 21% oxygen, and 1% argon by volume?

SOLUTION:

The apparent molecular weight of a gas mixture will be the total weight of the
mixture divided by the total number of moles in the mixture (that is, the average
weight of one mole of molecules). The ideal gas law, Equation 11-3, can't distin-
guish between gases; it works equally well for a pure gas or a gas mixture. For a
given temperature and pressure the volume of a single gas (A) is given by

RT

va= (G

and for a mixture of gases (A, B, and C) by

V =(n )(R—T)
= s + N + H¢ P

If you divide the first equation by the second, you get

\% n n
o T =% = mole4raction
Vv ny + ng + n¢ n

and conclude that, at a given temperature and pressure, the fraction (or percent-
age) of the volume occupied by each component isjust equal to its fraction (or
percentage) of the total moles present.

If we arbitrarily take 100 moles of air, the percentages by volume indicate that
we have 78 moles of N,, 21 moles of O, and 1 mole of Ar. We know the molecular
weights of the individual components, so we calculate the total weight as follows:

g )

78 moles of N, weigh (78 moles) (28 0

=2
016/ ‘_184 g
21 moles of O, weigh (21 moles) l 32.0 —l = 6729
1 mole of Ar weighs (1 mole) (40.0 m) = 40¢g

Total weight of 100 moles = 2896 g
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AOoNL ;— - 2 . g—
100 moles mole

= apparent molecular weight of air

Average weight of one mole =

PROBLEM:
How many molecules are there in 3.00 liters of a gas at a temperature of 500°C and
a pressure of 50.0 torr?

SOLUTION:
If we find the number of moles of gas using Equation 11-3, we can convert that to
molecules by using Avogadro's number.

PV (50.0 torr}(3.00 liters)

n = - = 1 x 107% moles
RT torr liter
62.4 ————— (773 K
\ mole K/( 3K
No. of molecules = (3.1t x 10~* moles) k6.02 x 100 MO 2)
mole

= 1.87 x 10*' molecules

DALTON'S LAW OF PARTIAL PRESSURES

The pressure of agas is due to the impacts of the molecules on the walls of the
container. The greater the number of molecules, the higher the pressure. In a
gas mixture, the pressure that each gas would exert if it occupied the same
volume by itself at the same temperature is called thepartial pressure. The ideal
gas law, Equation 1 1-3, can't distinguish between gases; it works equally well
for a pure gas or a gas mixture. For a given temperature and volume the
pressure of a single gas (A) is given by

RT
Po=n ()

and for a mixture of gases (A, B, and C) by

P = (ny + ng + IIL) (Fi/_]_)

If you divide the first equation by the second, you get

~o

n n .
A= a2 molefraction
P oy +”lB +n(
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and conclude that, at agiven volume and temperature, the fraction (or percent-
age) of the total pressure exerted by each component isjust equal to its fraction
(or percentage) of the total moles present. Thus, to draw on aprevious problem,
if we know that 21.0% of the moles of air is O,, we know that 21.0% of the air
pressure is due to O,. If the barometric pressure is 740 torr, then the partial
pressure of O, is

P,, = (0.210)(740 torr) = 155 torr

A corollary of this observation is Dalron’s law of partial pressures, that the
total pressure (P) of agas mixture is equal to the sum of the partial pressures of
the components, i.e.,

P:PA+PB+Pc+"' (11-4)

In the laboratory work of general chemistry, we have important applications
of partial pressures. Gases (such as oxygen) that are not very soluble in water
are collected in bottles by displacement of water. As the gas bubbles rise
through the water, they become saturated with vapor, and the collected gas is a
mixture of water vapor and the original gas. When the bottle is filled, it is at
atmospheric pressure, or

Py + Py,o = barometric pressure = Py

To obtain the partial pressure of the gas (P..s}, we must subtract the water-
vapor pressure from the barometric pressure

Pgas=PB~PHzO

Fortunately, water-vapor pressures are known accurately over the entire liquid
range of water (see Table 11-1) and do not have to be determined experimen-
tally each time.

When gases are collected over mercury, no correction is needed for the vapor
pressure of Hg because it is so small (about 2 x 1073torr at room temperature).
Collection over Hg has the further advantage that gases are insoluble in it.
Disadvantages are its high cost and the toxicity of its vapor.

PROBLEM:

A 250 ml flask isfilled with oxygen, collected over water at a barometric pressure
of 730 torr and a temperature of 25°C. What will be the volume of the oxygen
sample, dry, at standard conditions?

SOLUTION:
Changing the temperature and pressure of agas sample changes only the volume,
not the number of moles (that is, n remains constant). As aconsequence, the ideal
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TABLE 11-1
Vapor Pressures of Water at Various Temperatures

f (°C) P (torr) t(C) P (torr) f (C) P (torr)

0 458 15 128 29 300
1 493 16 136 30 318
2 529 17 14 5 31 337
3 569 18 155 32 357
4 6 10 19 165 33 377
5 654 20 175 34 399
6 7 01 21 187 35 422
7 7 51 22 198 40 553
8 805 23 211 50 925
9 8 61 24 224 60 149 4

10 9 21 25 238 70 2337

11 984 26 252 80 3551

12 105 27 267 20 5258

13 12 28 283 100 7600

14 120

gas equation (Equation 1 1-3) can be rearranged to give

PV, PV, _ —
T, = T, = nR = constant
PV,T
d — 1vi1t2
an V. —PzT1

In this problem, however, we must use the actual partial pressure of the O, in the
flask, not the total pressure. The partial pressure of O, 1s easily obtained by
subtracting the vapor pressure of H,O at 25°C (24 torr, from Table 11-1) from the
total pressure (730 torr) to give 706 torr. Therefore

_ (706 torr)(250 ml)(273 K)
¢ (760 torr)(298 K)

= 213 ml at standard conditions

PROBLEM:

What is the volume of one mole of N, {(or anv gas) measured over water at 730 torr
and 30°C?

SOLUTION:

From Table 11-1, wefind that the partial pressure of water vapor is 32 torr at 30°C.
Thus, the partial pressure of the N, is 730 torr - 32 torr = 698 torr. Applying the
ideal gas equation, we obtain
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(1 mole) (62 4;’3‘;‘3

698 torr

" )(303 K)

= 27.1 liter

GRAHAM’'S LAW OF DIFFUSION AND EFFUSION

When we put two gases together, the molecules diffuse throughout the con-
tainer, so that within a short time the mixture is homogeneous, or of uniform
concentration throughout. Not al gases diffuse at the same rate, however: the
lighter the molecule, the more rapid the diffusion process.

If different gases are put into a container at the same temperature and
pressure and then allowed to effuse (leak out) through a pinhole in the con-
tainer, you can compare their rates (r) of effusion (measured in ml/min). The
simplest way to do this is to determine the times (t) required for equal volumes
to effuse through the pinhole. The rates arejust inversely proportional to the
times; the shorter the time, the faster the rate. Such a comparison of any two
gases shows that these rates of effusion (and diffusion) are related to the molec-
ular weights of the gases according to the equation

r_ty_ [M, .
L=z ,/Ml (11-5)

which is known as Graham'slaw ofdiffusion and effusion. This same relationship
can be derived theoretically from the kinetic theory of gases. This equation
offers a simple way to determine the molecular weights of gases.

PROBLEM:

The molecular weight of an unknown gas is found by measuring the time required
for a known volume of the gas to effuse through a small pinhole, under constant
pressure. The apparatus is calibrated by measuring the time needed for the same
volume of O, (mol wt = 32) to effuse through the same pinhole, under the same
conditions. The time found for O, is 60 sec, and that for the unknown gas is 120
sec. Compute the molecular weight of the unknown gas.

SOLUTION:

If we use Graham's law, and let gas 1 be O, and gas 2 be the unknown gas, then
A [My
Los g Mo,

120 sec ” _ (M2 g/mole)i
Y TN\ 32 g/mole
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By squaring both sides we get

N
i
| =

M,= 12° "—
mole

PROBLEMS A

1.

10.

A graduated tube, sealed at the upper end, has a mercury-filled leveling bulb
connected to the lower end. The gas volume is 25.0 ml when the mercury level
is the same ii: both tubes. The barometric pressure is 732 torr. What is the
volume when the level on the open side is 10.0 cm above the level of the
closed side?

. If abarometer were filled with aliquid of density 1.60 g/ml, what would be the

reading when the mercury barometer read 730 torr? The density of mercury is
13.56 g/ml.

A mercury barometer reading of 728.3 mm is obtained at 23°C with a brass
scale. What is the barometer reading "corrected to 0°C"—that is, in torr?

What is the atmospheric pressure in Ibs/in* when the barometer reading is 720
torr?

A student collects 265 ml of a gas over Hg at 25°C and 750 torr. What is the
volume at standard conditions?

What is the volume at room conditions (740 torr and 25°C) of 750 ml of a gas at
standard conditions?

. A sealed vessel containing methane, CH,, at 730 torr and 27°C is put into a box

cooled with "dry ice" (—78°C). What pressure will the CH, exert under these
conditions?

Liquid nitrogen (boiling point, -195.8°C) is commonly used as a cooling
agent. A vessel containing helium at 10 Ib/in* at the temperature of boiling
water is sealed offand then cooled with boiling liquid nitrogen. What will be
its pressure expressed in torr?

Two liters of N, at 1.0 atm, 5.0 liters of H, at 5.0 atm, and 3.0 liters of CH, at
2.0 atm are mixed and transferred to a 10.0 liter vessel. What is the resulting
pressure?

A low pressure easily achieved with a diffusion pump and a mechanical vac-
uum pump is 1.00 x 10-%torr. Calculate the number of molecules still present
in 1.00 ml of gas at this pressure and at 0°C.

. A sample of nitrous oxide is collected over water at 24°C and 735 torr. The

volume is 235 ml. What is the volume at standard conditions?
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13

14
15

17
18

19

20

21

22

23

24

25

Gases

(8 What volume will 0 500 g of O, occupy at 750 torr and 26°C over water?
(b) What volume will 1t occupy if collected over mercury at the same condi-
tions”?

A sample of NaNO, 1s tested for purity by heating it with an excess of NH,Cl
and collecting the evolved N, over water The volume collected 1s 567 3 ml at
a barometric pressure of 741 torr The temperature 1s 22°C What volume
would the mtrogen, dry, occupy at standard conditions’

What 1s the weight of 250 ml of N, measured at 740 torr and 25°C>

What volume will be occupied by | 00 g of O, measured over water a 27°C
and 730 torr?

What 1s the molecular weight of a gasif 250 ml measured over water at 735 torr
and 28°C weighs 1 25 g?

What 1s the density of chlorine gas (Cl,) at 83°F and 723 torr’

Calculate the density of N,O (a) at standard conditions, (b) at 730 torr and
25°C, dry

It 1s found experimentally that 0 563 g of a vapor a 100°C and 725 torr has a
volume of 265 ml Find the molecular weight

A compound has the formula CgH,; What volume wilt 1 00 g of this material
have at 735 torr and 99°C”

What 1s the apparent mole weight of a gas mixture composed of 20 0% H,,
70 0% CO,, and 10 0% NO” (Composition given 1s percentage by volume )

An oxygen-containing gas mixture at 1 00 atm 1s subjected to the action of
yellow phosphorus, which removes the oxygen In this way it 1s found that
oxygen makes up 35 0% by volume of the mixture What 1s the partial
pressure of O, 1n the mixture?

A mixture of gases contained in a vessel at 0 500 atm s found to comprise

15 0% N, 50 0% N,0, and 35 0% CO, by volume

(8 What 1s the partial pressure of each gas®

(b) A bit of solid KOH 1s added to remove the CO, Calculate the resulting
total pressure, and the partial pressures of the remaining gases

A vessel whose volume 1s 235 0 ml, and whose weight evacuated 1s 13 5217 g
+ atare vessel, 1s filled with an unknown gas at a pressure of 725 torr and a
temperature of 19°C It 1s then closed, wiped with adamp cloth, and hung in the
balance case to come to equilibrium with the tare vessel The tare vessel has
about the same surface area and 1s needed to minimize surface moisture
effects This second weighing s 13 6109 g + the tare vessel What 1s the mole
weight of the gas?

Two or three milliliters of a liquid that boils at about 50°C are put into an
Erlenmeyer flask Theflask is closed with a polystyrene stopper that has a fine
glass capillary running through 1t The gas-containing part of the flask 1s then
completely immersed in a bath of boiling water, which (at the elevation of the
experiment) boils at 99 2°C After a short time the air has been completely
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swept out through the capillary, and the excess liquid has boiled away, leav-
ing the flask filled only with the vapor of the liquid At this point the flask 1s
removed from the boiling water and cooled The vapor condenses to liquid,
and arr rushes 1n to fill the flask again Whereas the flask, when empty and
dry, weighed 453201 g, after the experiment it weighs 46 0513 g The
barometric pressure during the experiment 1s 735 torr The volume of the flask
1s determined by filling the flask with water, inserting the stopper to its previ
ous position, and sgqueezing out the excess water through the capillary The
volume of water so held 1s 263 2 ml What 1s the mole weight of the liquid'

26 Theliquid used in Problem 25 1s analyzed and found to be 54 5% C, 9 10% H,
and 36 4% O What 1s the true molecular formula of this liquid?

27 An automobile tire has a gauge pressure of 32 Ib/in* at 20°C when the prevail-
ing atmospheric pressure 1s 14 7 1b/iin® What 1s the gauge pressure if the
temperature rises to 50°C?

28 It takes 1 mm and 37 sec for a given volume of chlorine (Cl,) to effuse through
apihole under given conditions of temperature and pressure How long will 1t
take for the same volume of water vapor to effuse through the same hole
under the same conditions?

29 Argon effuses through a hole (under prescribed conditions of temperature and
pressure) at the rate of 3 0 ml/mm At what velocity will xenon effuse through
the same hole under the same conditions”

30 A rubber balloon weighing 50 g 1s 12 inches in diameter when filled with
hydrogen at 730 torr and 25°C How much will the balloon lift in addition to its
own weight? (Assume the density of air to be 1 2 g/liter under these condi-
tions)

31 (a) If the balloon of Problem 30 werefilled with ammoniagas (NH ;) under the
same conditions, would 1t rise’
(b) If so, how much weight would 1t lift?

32 What must be the composition of a mixture of H, and O, if 1t inflates a balloon
to a diameter of 15 inches and yet the balloon just harc v rises from a table
top? (The balloon weighs 6 0 g, and the pressure and temperature are 740 torr
and 30°C)

33 Oxygen 1s commonly sold in 6 O ft* steel cylinders at a pressure of 2000 1b/in?
(at 70°F) What weight of oxygen does such a cylinder contain’ (Assume
oxygen to be an ideal gas under these conditions )

34 The average breath that an 18-year old takes when not exercising 1s about 300
ml at 20°C and 750 torr His respiratory rate 1s about 20 breaths/mm
(8 What volume of air, corrected to standard conditions, does an average
18-year-old breathe each day’
(b) What weight of air does he breathe each day’ (Assume that air 15 21%
oxygen and 79% nitrogen by volume )

35 The percentage of CO, in normal air 1s 0 035% by volume, and that in the
exhaled air of the average 18-year-old 1s about 4 0%
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(8 What volume of CO,, at standard conditions, does the average 18-year-old
make each day”
(b) What weight of CO, does he make each day’

An organic compound containing C, H, O, and N 1s analyzed When a sample
weighing 0 01230 g 15 burned, 1t produces 18 62 mg of CO, (absorbed 1n a
soda-lime tube) and 7 62 mg of H,O [absorbed in a tube containing
Mg(ClOy),] When another sample, weighing 0 0051()g, 1s burned, the CO; and
H,O are absorbed, and the N, formed 1s collected in a measuring tube At 730
torr and 22°C, the N, gas displaces an equal volume of mercury, which 1s
weighed and found to weigh 15 000 g The density of mercury 1s 13 56 g/ml
Calculate the empirical formula of the compound

PROBLEMS B

37

38

39

40
4]

42

43

44

45

46

A graduated gas tube, sealed at the upper end, has a mercury filled leveling
bulb connected to the lower end The gas volume 1s 17 2 ml when the leveling
bulb 1s 8 cm above the other mercury level What will be the gas volume when
the leveling bulb 1s 8 cm below the other mercury level” The barometric
pressure 1s 738 torr

If a barometer were filled with a silicone fluid whose vapor pressure 1s very
low but whose density 1s 1 15 g/ml, what would be the barometer reading
when the atmospheric pressure 1s 710 torr? (The density of mercury 1s [3 56
g/ml)

A gas pressure 1s measured as 826 4 mm with a mercury manometer in a lab
whose temperature 1s 24°C A brass scale 1s used Express this gas pressure in
torr

A gas pressure 1s 690 torr What 1s 1ts pressure in dynes/cm??

What 1s the volume at 730 torr and 27°C of 350 ml of H,S at standard condi-
tions’

A 50 0 ml quartz vessel 1s filled with O, at 300 torr and a 35°C It 1s then
heated to 1400°C 1n an electric furnace What will be the oxygen pressure at
the higher temperature”

A sample of NH; gas collected over mercury measures 595 ml at 19°C and 755
torr What will be 1its volume at standard conditions’

What will be the final gas pressure when 3 Oliters of CO at 2 0 atm, 6 O liters of
Ar at 4 0 atm, and 2 O liters of C,H, at 5 0 atm are mixed and transferred to a
8 0 liter vessel”

A 375 ml sample of hydrogen 1s collected over water at 18 C and 720 torr
What 15 1ts volume at standard condittons’

What will be the difference in volume occupied by 0 100 g of hydrogen at 740
torr and 19°C 1if it 1s collected over water instead of mercury’
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A mixture of copper and zinc is analyzed for the percentage of zinc by adding
an excess of HCI and collecting the evolved H, over water. (Copper will not
react with HCI.) The volume of H, collected is 229.5 ml at a barometric
pressure of 732 torr. The temperature is 29°C. What volume would the H,
occupy at standard conditions, dry?

. In some recent work at the Bell Telephone Research Laboratory, a low

pressure of 10-* torr of mercury was used. This is an unusually low pressure,
one not easily obtained. Calculate the number of molecules still remainingin 1
ml of gas at this pressure at 27°C.

A 1 g sample of helium occupies 5.6 liters at standard conditions. What will be
its weight when expanded to a pressure of 0.10 atm?

What volume will 5.00 g of methyl alcohol, CH;OH, occupy at 720 torr and
98°C?

What is the weight of 420 ml of NH; measured at 735 torr and 27°C?

What volume will be occupied by 2.50 g of CO measured over water at 27°C
and 725 torr?

What is the molecular weight of a gas if 365 ml of it measured over water at
727 torr and 30°C weighs 1.42 g?

. What is the density of NH, gas at 78°F and 741 torr?
55.

Calculate the density of C,H, (d) at standard conditions; (b) at 725 torr and
27°C, dry.

What is the apparent mole weight of a gas mixture whose composition by
volume is 60.0% NHj, 25.0% NO, and 15.09% N,

If 0.670 g of avapor at 100°C and 735 torr has a volume of 249 ml, what must
its mole weight be?

A mixture of gases contained in avessel at 1.30 atm isfound to be 60.0% NH;,,

25.0% NO, and 15.0% N, by volume.

(8 What is the partial pressure of each gas?

(b) A bit of solid P,O,, is added to remove the NH;. Calculate the resulting
total pressure, and the partial pressures of the remaining gases.

A gas mixture containing CO, is subjected, at 1.00atm, to the action of KOH,
which removes the CO,. In thisway, the CO, isfound to be 27.0% by volume
of the mixture. What is the partial pressure of CO, in the mixture?

A vessel, whose volume is 205.3 ml and whose weight evacuated is 5.3095 g +
a tare flask, is filled with an unknown gas to a pressure of 750 torr at a
temperature of 27°C. It is then cleaned, wiped with adamp cloth, and hungin
the balance case to come to equilibrium with the tare vessel. The tare vessel
has about the same surface area and is needed to minimize effects of surface
moisture. The second weighing is 5.6107 g + the tare flask. What is the mole
weight of the gas?
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Two or three milliliters of a liquid that boils at about 60°C are put into an
Erlenmeyer flask The flask 1s closed with a polystyrene stopper that has a fine
glass capillary running through 1t The gas-containing part of the flask 1s then
completely immersed tn a bath of boiling water, which (at the elevation of the
experiment) boils at 98 8°C After a short time the air has been completely
swept out through the capillary, and the excess liquid has boiled away, |eav-
ing the flask filled only with the vapor of the liquid At this point the flask 1s
removed from the boiling water and cooled The vapor condenses to liquid

and air rushes 1 to fill the flask again The flask, when dry and empty had
weighed 39 5762 g, after the experiment 1t weighs 40 3183 g The barometric
pressure during the experiment 1s 730 torr The volume of the flask 1s deter-
mined by filling the flask with water, inserting the stopper to its previous
position, and squeezing out the excess water through the capillary The vol

ume of water so held 1s 239 6 ml What 1s the mole weight of the liquid’

The liquid used 1n Problem 61 1s analyzed and found to be 24 2% C, 4 05% H,
and 71 7% Cl What 1s the true molecular formula of this liquid”

An automobile tire has a gauge pressure of 35 0 ib/in? when the atmospheric
pressure 1s 14 7 Ib/in? and the temperature 1s 40°F What will be 1its gauge
pressure 1if its temperature rises to 120°F?

Hydrogen chloride effuses through a hole (under prescribed conditions of
temperature and pressure) at the rate of 2 70 ml/mm At what velocity will
helium effuse through the same hole under the same conditions?

It takes 45 sec for a given volume of CO to effuse through a pinhole under
given conditions of temperature and pressure How long will 1t take for the
same volume of Br, vapor to effuse through the same hole under the same
conditions?

Under certain prescribed conditions, O, effuses through a pinhole at the rate
of 3 65 ml/mm A mixture of CO and CO, effuses through the same pinhole
under the same conditions at the rate of 3 21 ml/mm Calculate the percentage
of CO m the gas mixture

A rubber balloon weighing 10 g 1s 15 inches in diameter when inflated with
helium at 735 torr and 75°F How much weight will the balloon lift in addition
to its own weight? (Assume the density of air to be 1 20 g/liter under these
conditions )

If the balloon of Problem 67 were filled with methane, CH,, at 735 torr and
75°F, would 1t rise” If so, how much additional weight would 1t Lift?

A mixture of N, and H, has a density of 0 267 g/hter at 700 torr and 30°C For
this mixture, calculate (a) the apparent molecular weight, (b) the percentage
composition by volume, and (c) the number of molecules in one ml

Show the mathematical steps needed in order to combine Boyle s and
Charles' laws to give Equation 11-2 on p 159

Use the methods of calculus to combine Boyle's and Charles' laws to give
Equation 11-2 on p 159



12

Stoichiometry Il: Calculations Based
on Chemical Equations

A chemical equation is a statement of experimental fact. It gives on the left side
the reactants and on the right side the products of the reaction. Because no
atoms are produced or destroyed in a nonnuclear chemical reaction, the equa-
tion must be so balanced that every atom originally present in the reactants is
accounted for in the products. This means that the combined weight of the
reaction products is exactly equal to the combined weight of the origina
reactants.

All of the important stoichiometric calculations that relate the weights and
volumes of starting materials to the weights and volumes of products typically
involve just three simple steps.

1. Find how many moles correspond to the given quantity of some sub-
stance in the reaction.

2. Use the balanced chemical equation to find, from the number of moles
of the given substance, the number of moles of the substance sought in
the calculation.

3. Convert the number of moles of the substance sought to the units
requested in the statement of the problem.

hese three steps are illustrated in the following problems.
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Stolchlometry II: Calculations Based on Chemical Equations

PROBLEM:

Oxygen is prepared by heating KCIO,.

(d) What weight of O, is obtained from 3.00 g KC1O;?

(b) What is the volume of O,, measured at standard conditions?

(c) What volume does the O, occupy if collected over water at 730 torr and 25°C?

SOLUTION:

The first step is to write the balanced eguation for the reaction (if it is not given).
This step requires knowledge of the experimental facts. We note in the text that,
when KCIQ, is decomposed by heating, the products are KC! and O,, so we start
with the unbalanced equation

KClO, > KCl + 0,

(The A symbol indicates that heating is necessary.) To account for the three
moles of oxygen atoms in KCIO; we need 3 moles of O, in the products:

KClO; 2 KCl + 30,

This is now a balanced equation, but we prefer to eliminate fractional numbers of
moles, so we multiply all terms by 2, getting the final equation

2KCIO, 5 2K C1 + 30,

We now examine the problem, asking two questions: (a) what is given, and (b)
what is sought? We see (a) that the weight of KCIO; used is given, and (b) that we
seek the amount of O, produced. We then proceed with the three steps listed
earlier.

1. From the weight of KCIO, given, compute the number of moles that are
given.

Moles of given = 3.00 g KCIO3
KClO, ¢ KCio, = 002 moles KCIO,

“mole KCIO,

2. From the moles of KC10, given, compute the number of moles of O, pro-
duced. The chemical equation shows that 3 moles of O, are produced from 2
moles of KCIO;,. Therefore,

3 moles O
Moles of O: produced = (» m—a%;) (0.0245 moles KCiOjy)

= 0.0368 moles O,

3. From the moles of O, produced, express the amount of O, in the units
specified in the statement of the problem, as follows.

(a) Weight of O,

(0.0368 moles 02)( 20 & %)

1.18 g O,

(b) The volume of O, will be given by the ideal gas law (see p 159). For standard
conditions, T = 273.2 K and P = 760.0 torr, so
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torr liter
e (0.0368 moles) ( 62.4 ' 1e}(273 k)
- P 760 torr
= 0.825 liters O, at standard conditions

(c) The volume of O, will again be given by the ideal gas law, but the partial
pressure of O, must be used (not the combined pressures of O, and water
vapor). The partial pressure of O, is calculated from Dalton’s law, using the
vapor pressure of H,0O (24 torr) from Table 11-1.

Py, = 730 torr - 24 torr = 706 torr

liter\
gy (00888 moles) “62.4 " M (298 )

P 706 torr
= 0.969 liters O,

V =

PROBLEM:
Chlorine is prepared by the reaction

2NaMnO, + [ONaCl + 8H,SO, — 2MnSO, + 6Na,SO, + 5Cl, + 8H,0
or
2MnO; + IOC1- + 16H* — 2Mn** + 5Cl, + 8H,0

What weights of (a) pure NaCl and (b) 90.0% pure NaMnO, are needed to prepare
500 ml of Cl, gas measured dry at 25°C and 730 torr?

SOLUTION:
We follow the three simple steps.

1. From the volume of Cl, that we are given (to prepare), compute the moles of
Cl, that are given, using the ideal gas equation.

PV (730 torr)(0.500 liter)

n= 574 =
RT torr liter)
(624 Fareic) 298 0

= 0.0196 moles Cl, given

2. From the moles of Cl, given, compute the number of moles of NaCl and
NaMnO, required. The chemical equation shows that 10 moles of NaCl and 2
moles of NaMnO, are required for 5 moles of Cl,, therefore the needed

moles of NaCl

il

10 moles NaCly
(ﬁlﬁes_gll_ j (0.0196 moles Cl;) = 0.0392 moles

/2 les NaMnO.\
moxs Nalin  (0.0196 moles Cly) = 0.00784 moles

moles of NaMnO,

\ D 1HOICS Ul

3. From the moles of NaCl and NaMnO, required, express these quantities in
the units specified in the statement of the problem.
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g NaCl

. /
(a) Weight of pure NaCl = (0 0392 moles NaCl) \58 5 mole NaCl
=229 g NaCl

(b) If x = the required grams of 90 0% pure NaMnO,, you can see that 0 90x ¢
must contain 0 00784 moles of NaMnO, That 1s,

0 90x g = ( 00784 moles NaMnO,) ((141 g & NaMnO, >

mole NaMnO,
= 1 11 g pure NaMnO,

11
(U V)

X = = 1 23 g impure NaMnO,

PROBLEM:

(& What volume of oxygen at 20°C and 750 torr 1s needed to burn 3 00 liters of
propane, CsHg, dso at 20°C and 750 torr?

(b) What volume of air (21 0% O, by volume) would be required under the same
conditions? The products of combustion are solely CO, and H,O

SOLUTION:

First, you must have a balanced chemical equation on whi¢h to base your calcula-
tion Because the three C atoms of C;H, are converted to 3CO,, and the 8H atoms
are converted to 4H,0O, you can readily see that the 10 oxygen atoms needed in
this much CO, and H,O must come from 50, Therefore,

CoH, + 50,5 3CO, + 4H,0

Second, you must realize that, when the two substances you are interested 1n are
both gases you can make a much simpler calculation than that involved in the
"three simple steps * You recall (see p 160) that equal volumes of gases under the
same conditions of temperature and pressure contain the same number of moles
(or molecules) The chemical equation shows that you need 5 moles of O, per mole
of C;Hg, therefore, you will need 5 times the volume of O, as the volume of C,H,
under the same conditions Therefore,

5 moles 02‘
( 1 molke C,Hy/
15 0 liters of O,

(@ Volume of O, (300 liters C3Hg)

(b) IfV = the required volume of air (also agas) that 1s 21 0% O,, you can see that
0 210V liters of air must provide 15 0O liters of O, That s,

0210V = 150 liters O,

V=% g4 iters of
—0210— |ters or amr
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PROBLEM:
Sulfur dioxide is prepared by heating iron pyrites, FeS,, in the presence of air. The
reaction is

4FeS, + 110, > 2Fe,0, + 8S0,

(@) How many tons of SO, can be obtained from 20.0 tons of FeS,?
(b) What volume of air, in cubic feet at 0.90 atm and 77°F, is required for the
treatment of 20.0 tons of FeS,? Assume the air to be 21.09% O, by volume.

SOLUTION:
First, you need to know that it is not necessary to convert tons to grams to moles,
and then at the end reconvert moles to grams to tons. You recall that the atomic
weight scale (inside back cover) is arelative atomic weight scale habitually used
with gram as the mass unit. For problems like this where tons (or Ib, or oz, or
whatever) are involved, it is easier to use ton as the mass unit and to use ton
molecular weights (ton-moles) instead of gram molecular weights (moles). We till
use the three-step approach.

1. From the weight of FeS, given, compute the number of ton-moles that are
given.

NN tane U‘:Sz

Ton-moles of FeS, given = P = (.167 ton-moles FeS,
120.0 wons rey,

ton-mole FeS,

2. From the ton-moles of FeS, given, compute the number of ton-moles of SO,
produced and the ton-moles of O, required. The chemical equation shows that 8
ton-moles of SO, are produced and 11 ton-moles of O, are required for every 4
ton-moles of FeS,. Therefore,

/ 8 ton-moles SO,
\ 4 ton-moles FeS,

= 0.333 ton-moles SO,

ton-moles of SO, produced =

\
/(0. 167 ton-moles FeS,)

/ 11 'nn_m(\\}&g’ sz \

ton-moles of O, required = (ZMres FesS )(0. 167 ton-moles FeS,)
- 2

= 0.458 ton-moles O,

3. From the ton-moles of SO, and O, produced, express the amounts of SO, and
0, in the units specified in the statement of the problem.

tons

. _ ) {... ] _2_)
(a) Weight of SO, = (0.333 ton-moles SOz)\ ton-mole SO,

= 21.3 tons SO, produced

(b) The volume of O, (or air) must be calculated from the ideal gas equation,
where the gas constant R is always on a per mole basis (that is, a gram-
molecular-weight basis). The simplest approach in this case is to first convert
0.458 ton-moles of O, to gram moles (just plain moles), and then use the idea
gas equation.
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Ib-moles O,\/  g-moles O,

Moles of o, = (0 458 moles
0, = ( ton 02)\(2000tonnmo|féﬂ02‘/\ Ib-mole O,/

=4 16 x 10° moles O,

The ideal gas equation will give the liters of O, at the specified conditions (77°F
= 25°C, and 0 9 atm = 09 x 760 torr/atm = 684 torr)

torr liter
K7

4 16 X 10° moles 4
e e,
P 684 torr

= 1 13 x 107 liters of pure O,

) (298 K)

If X = volume of air (21 0% O, by volume) that 1s required, then 0 210X must
provide 1 13 x 107liters of pure O,

em? Tin \%/ 1ft\?
021X = (113 x 1071 ’
(1 13 x 107 Iiters 02)<10 hter) (2 54 crn) <l2m)

= 399 x 10~ ft? of pure O,

_ 3%X 10°- 1 90 x 10° froof arr

PROBLEM:

A 02052 g mixture of copper and aluminum 1s analyzed for the percentage of
aluminum by adding an excess of H,SO, and collecting the evolved H, over water
(Copper will not react with H,SO, ) The volume of H, collected 1s 229 5 ml at a
barometric pressure of 732 torr The temperature 1s 29°C Calculate the percentage
of aluminum 1in the original sample The chemica reaction is

2A1 + 3H,SO, — Al,SO, + 3H,
or 2Al + 6H* = 2Al’* + 3H,

SOLUTION:

We follow the standard three simple steps ' to find, from the given amount of Hy,
how much Al must be present At the end, this amount of Al 1s stated in terms of
how much sample was used (that 1s, the % purity of the sample)

1 From the volume of H, given (produced), compute the number of moles
of H, that are produced, by using the ideal gas equation The pressure
must be corrected for the vapor pressure of water (30 torr at 29°C, from

Table 11-1)
_ PV (732 torr - 30 torr)(0 2295 liter)
T RT ( 4 torr hiter\
\6 mole K/ (302 K)

=855 x 10 * molesH,
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2. From the moles of H, produced, calculate the number of moles of Al that

must have been present. The chemical equation shows that 2 moles of Al
are required for 3 moles of H,. Therefore,

— {2 moles Al s
— B l
\3 moles H, )(8 55 x 1073 moles N

= 570 x 1073 moles of Al in original sample

moles of Al

. From the moles of Al present, calculate the weight of Al present. From

the weight of Al present, then calculate the percentage in the origina
sample.

. - -3 g Al )
Weight of Al present = (5.70 x 10~® moles Al) (27.0 mole Al

= 0.1539 g Al

s Al

% Al present = (—0._2705295a1?5le\) x 100 = 75.0% Al

All of these illustrative problems have been worked in the three distinct
steps, in order to emphasize the reasoning involved. With alittle practice, you
can combine two or three of these steps into one operation (or set-up), greatly
increasing the efficiency in using your calculator.

PROBLEMS A

1. Balance the following equations, which show the starting materials and the

reaction products. It is not necessary to supply any additional reactants or

products. A A sign indicates that heating is necessary.

(8 KNO; > KNO, + 0,

(b) Pb(NO,), = PbO + NO, + O,

(c) Na + H,O0 — NaOH + H.

(d) Fe + H;0 > Fe;0, + H,

(6) C.H;OH + 0, > CO, + H,0

(f) Fe,04 + H, & Fe + H,0

(9) CO, + NaOH — NaHCO;,

(h) MnO, + HC1 — H,0 + MnCl, + Cl,

(i) Zn + KOH — K;Zn0O, + H,

() Cu + HySO, 5 H,0 + SO, + CuSO,

(k) AIKNO,), + NH, + H,0 — Al(OH), + NH,NO,
(1) ANO,); + NaOH — NaAlO, + NaNO, + H,0
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2 Some common gases may be prepared in the laboratory using reactions rep-
resented by the following balanced equations A A sign indicates that heating
1s necessary For purity, air must be swept out of the apparatus before the gas
1s collected, and some gases must be dried with a suitable desiccant

FeS + 2HC1 — H,S + FeCl,
CaCO, + 2HC1 — CO, + CaCl, + H,0
2NH,CI + CaO 5 2NH; + CaCl, + H,0
NaCl + H,S0, % HCl + NaHSO,
NH,CI + NaNO; > N;0 + NaCl + 2H,0
2Al + 3H,S0, — Al(SO,); + 3H,
CaC, + 2H;0 — C,H, + Ca(OH),

(8 What weight of FeS 1s needed to prepare (1) 4 50 moles of H,S”? (//) 1 00 1b
of H,S”

(b) How many tons of limestone (CaCO,) are needed to prepare 5 00 tons of

dry ice (CO,), assuming that 30% of the CO, produced 1s wasted 1n
converting 1t to the solid?

(c) How many grams of NH,Cl and CaO are needed to make 0 100 mole of
NH,”

(d) How many grams of 95% pure NaCl are needed to produce 2 00 1b of HC1?

(e) What volume ofcommercial HC1 (36% HC! by weight, density = 1 18 g/ml)
and what weight of limestone (90% pure) are needed to produce 2 00 kg of
CO,?

(£) Commercial sulfunc acid that has adensity of 1 84 g/ml and 1s 95% H,SO,
by weight 1s used for the production of HCI ~ (:) What weight of com-
mercial acid 1s needed for the production of 365 g of HCI? (1) What
volume of acid 1s needed for the production of 365 g of HCI?

(g9) Commercia sulfuric acid that has a density of 1 45 g/ml and 1s 55 1%
H,S0O, by weight 1s used for the production of H, What () weight and (i)
volume of this commercial acid are needed for the production of 50 0 g of
H, gas”

(h) A manufacturer supplies 1 1b cans of calcium carbide whose purity 1s
labeled as 85% How many grams of acetylene can be prepared from 1 00
b of this product if the label 1s correct?

() A whipped cream manufacturer wishes to produce 500 b of N,O for her
chain of soda fountains What 1s the cost of the necessary NH,Cl and
NaNO; if they cost $840 and $1230 per ton, respectively?

0) A 0795 g sample of impure limestone 1s tested for purity by adding H,SO,
(instead of HCI as shown 1n the second equation) After the generated gas
1s passed over Mg(Cl0,), to dry 1t, 1t 1s passed over soda lime (a mixture of
sodium and calcium hydroxides), which absorbs the CO, The soda-lime
tube increases 1n weight by 0 301 g What 1s the percentage of CaCOj; 1n
the original sample”

(k) The purity of a0 617 g sample of impure FeS 1s tested by passing the H,S
produced by the HCI (as in the first equation) into a dilute solution of
AgNO; The precipitate of Ag,S 1s filtered off, washed, and gently dned
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The weight of the Ag,S produced is 1.322 g. How pure was the original
sample of FeS?

How many grams of zinc are needed to prepare 3.00 liters of hydrogen at
standard conditions? The reaction is

Zn + H,SO, — ZnSO, + H,

(& How many grams of zinc are needed to prepare 3.00 liters of H, collected
over water at 750 torr and 26°C?
(b) How many moles of H,SO, are used?

What volume of O, at 730 torr and 25°C will react with 3.00 liters of H, at the
same conditions?

What volume of steam at 1000°C and 1 atm is needed to produce 10° ft? of H,,
under the same conditions, by the reaction

4H,0 + 3Fe 3 Fe,0, + 4H,

What volume of Cl, at 730 torr and 27°C is needed to react with 7.00 g of
sodium metal by the reaction

2Na + Cl, — 2NaCl

. (@ How many grams of MnO, are needed to prepare 5.00 liters of Cl, at 750

torr and 27°C?
(b) How many moles of HC1 are needed for the reaction? The reaction is

MnO, + 4HC1 — MnCl, + Cl, + 2H,0

. How much H,S gas at 725 torr and 25°C is needed to react with the copper in

1.5 g of CuSO,? The reaction is
CuSO, + H,S — CuS + H,SO,

(8 What volume of O, at 730 torr and 60°F is needed to burn 500 g of octane,
CsH ?

(b) What volume of air (21% O, by volume) is needed to provide this amount
of 0,? Balance the equation before working the problem.

C.H,s + 0,2 CO, + H,0

. Chlorine is prepared by the reaction

2KMnO, + 16HC] — 2KCI + 2MnCl, + 5Cl, + 8H,0O

(8) What weight of KMnO, is needed to prepare 2.50 liters of Cl, at standard
conditions?

(b) How many moles of HC1 are used?

(c) What volume of solution is needed if there are 12.0 moles of HC1 per liter?

(d) What weight of MnCl, is obtained from the reaction?

Nitric oxide is prepared by the reaction
3Cu + 8HNO; — 3Cu(NOy, - 2NO + 4H,0
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19.

Stoichiometry Il: Calculations Based on Chemical Equations

(8 What weight of copper and (b) how many moles of HNO; are needed to
prepare 500 ml NO, measured over water at 730 torr and 25°C?

(c) If the nitric acid solution contains 10.0 moles/liter, what volume of the
solution is used?

Arsenic compounds may be detected easily by the Marsh test. In this test,
some metallic zinc is added to an acid solution of the material to be tested, and
the mixture is heated. The arsenic is liberated as arsine, AsHjz;, which may be
decomposed by heat to give an "arsenic mirror." The reaction is

4Zn + HyAsO, + 8HCL > 4ZnCl, + AsH, + 4H,0

What volume of AsH; at 720 torr and 25°C is evolved by 7.00 x 10-7 g of
arsenic, the smallest amount of arsenic that can be detected with certainty by
this method?

H,S gas will cause immediate unconsciousness at a concentration of 1 part per
1000 by volume. What weight of FeSis needed tofill aroom 20 ft x 15 ft x 9 ft
with H,S at this concentration? Barometric pressure is 740 torr, and the tem-
perature is 80°F. The reaction is

FeS + 2HC1 — FeCl, + H,S

The Mond process separates nickel from other metals by passing CO over the
hot metal mixture. The nickel reacts to form a volatile compound (called
nickel carbonyl), which is then swept away by the gas stream. The reaction is

Ni + 4CO = Ni(CO),

How many cubic feet of CO at 3.00 atm and 65°F are needed to react with 1.00
ton of nickel?

A cement company produces 100 tons of cement per day. Its product contains
62.0% CaO, which is prepared by calcining limestone by the reaction

CaCO, > Ca0 + CO,

What volume of CO, at 735 torr and 68°F is sent into the air around the plant
each day as a result of this calcination?

The Ostwald process of making HNO; involves the air oxidation of NH; over
a platinum catalyst. The first two steps in this process are

4NH, + 50, > 6H,0 + 4NO

2NO + Q4 — 2NO,
How many cubic feet of air (21% O, by volume) at 27°C and 1.00 atm are
needed for the conversion of 50.0 tons of NH; to NO, by this process?

How many cubic feet of air (21% O, by volume) are needed for the production
of 10® ft3NO, at the same conditions as those used to measure the air? (See
Problem 17 for the equations involved.)

The du Pont company has developed a nitrometer, an apparatus for the rapid
routine analysis of nitrates, which measures the volume of NO liberated by
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the reaction of concentrated H,SO, with nitrates in the presence of metallic
mercury, by the reaction

2KNO; + 4H,S0, + 3Hg — K,SO, + 3HgSO, + 4H,0 + 2NO

In a simple form of this apparatus, the NO is collected over water in a grad-
uated tube and its volume, temperature, and pressure are measured. A 1.000 g
sample containing a mixture of KNO, and K,SO, is treated in this manner,
and 37.50 ml of NO is collected over water at a temperature of 23°C and a
pressure of 732.0 torr. Calculate the percentage of KNO; in the original sam-

ple.

A commercial laboratory wished to speed up its routine analysis for HNO; in
a mixture of acids, using the nitrometer mentioned in Problem 19. To do this, it
collects the NO over mercury, uses enough concentrated H,SO, to make
correction for water vapor unnecessary, thermostats its graduated tube at
25.0°C, and takes all pressure measurements at 730.0 torr. The tube is grad-
uated to 100.0 ml. What weight of original acid sample should always be taken
so that the buret reading under these conditions also indicates directly the
percentage of HNO; in the original sample?

In the Dumas method for measuring the total nitrogen in an organic com-
pound, the compound is mixed with CuO and heated in a stream of pure CO.,.
All the gaseous products are passed through a heated tube of Cu turnings, to
reduce any oxides of nitrogen to N,, and then through a 50% solution of KOH
to remove the CO, and water. The N, is not absorbed, and its volume is
measured by weighing the mercury (density = 13.56 g/ml) that the N, dis-
places from the apparatus.

(@ A 20.1 mg sample of a mixture of glycine, CH{NH,COOH, and benzoic
acid, C;H40.,, yields N, at 730 torr and 21°C. This N, displaces 5.235 g of
mercury. Calculate the percentage of glycine in the original mixture.

(b) A 4.71 mg sample of a compound containing C, H, (), and N is subjected
to a Dumas nitrogen determination. The N,. at 735 torr and 27°C, dis-
places 10.5532 g of mercury. A carbon-hydrogen analysis shows that this
compound contains 3.90% H and 46.78% C. Determine the empirical
formula of this compound.

PROBLEMS B

22.

Balance the following equations, which show the starting materials and the
reaction products. It is not necessary to supply any additional reactants or
products. A A sign indicates that heating is necessary.

(@ HyBO; > H,BsOy; + H,0

(b) CeH,204 — C,H;OH + CO,

(c) CaC, + N, > CaCN, + C

(d) CaCN, + H,0 — CaCO; + NH;

(6) BaO + C + N, > Ba(CN), + CO

() CeHg + O, > CO, + H,O
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23.

Stoichiometry II: Calculations Based on Chemical Equations

(8) C;Hy + 0p = CO, + H,0

(h) H,PO, 5 H,PO, + PH,

(i) MnO, + KOH + O, & K,MnO, + H,0

(i) KMnO, + H,SO, — K,SO, + Mn,0, + H,0
(k) CO + Fe,0,> FeO + CO,

() ZnS + 0, 5 ZnO + SO,

Some common gases may be prepared in the laboratory by reactions rep-
resented by the following equations. A A sign indicates that heating is neces-
sary. For purity, air must be swept out of the apparatus before the gas is
collected, and some gases must be dried with a suitable desiccant.

2NaHSO, + H,S0, — 250, + 2H,0 + Na,S0,
MnO, + 4HC1 % Cl, + MnCl, + 2H,0
2Na;0, + 2H,0 — 4NaOH + O,

SiO, + 2H,F, — SiF, + 2H,0
2HCOONa + H,S0,-> 2CO + 2H,0 + Na,SO,
__NH,ClI + NaNO, 5 N, + NaCl + 2H,0

2Al + 2NaOH + 2H,0 — 2NaAlO, + 3H,
ALC, + 12H,0 — 3CH, + 4AI(OH),

(8 What weight of NaHSOyj is needed to prepare (/) 1.30 moles of SO,? (H)
2.00 1b of SO,?

(b) How many moles of pyrolusite, MnO,, are needed to prepare (i) 100 g of
ClL,? (H) 2.60 moles of Cl,?

() How many pounds of sand, SiO,, are needed to prepare 10.0 Ib of SiF,,
assuming that 25% of the sand is inert material and does not produce
SiF,?

(d) How many grams of sodium formate, HCOONa, are needed to make
0.250 mole of CO?

(6) How many pounds of aluminum hydroxide are produced aong with 12.0
moles of CH, (methane)?

(f) How many moles of NH,CI are needed to prepare 1.33 moles of N, by the
sixth reaction?

(9) How many grams of 90% pure Na,O, (sodium peroxide) are needed to
prepare 2.50 1b of O,?

(h) Commercial sulfuric acid that has adensity of 1.84 g/ml and is 95% H,SO,
by weight is used for the production of CO by the fifth reaction. (i) What
weight of commercial acid is needed for the production of 560 g of
CO? (i) What volume of acid is needed for the production of 560 g of
Cco?

(i) What volume of commercial HC1 (36% HC1 by weight, density = 1.18
g/ml) and weight of pyrolusite (85% MnQ,) are needed to produce 5.00 kg
of Cl, by the second reaction?

(j) Commercial sulfuric acid that has adensity of 1.52 g/ml and is 62% H,SO,
by weight is used for the production of SO, by the first reaction. What (i)
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weight and (i) volume of this commercial acid are needed for the produc-
tion of 720 g of SO, gas?

(k) Assume that an excess of metallic aluminum 1s added to a solution contain
mg 100 g NaOH, and that as aresult all the NaOH 1s used up When the
reaction 1s complete, the excess aluminum metal 1s filtered off and the
excess water evaporated How many grams of NaAlO, are obtaned’

24 How many grams of aluminum are needed for the preparation of 5 50 liters of
H, at standard conditions? The reaction 1s

2A1 + 3H,SO, — Al(SOy; + 3H,

25 What weight of (NH,),SO, 1s needed for the preparation of 5 00 moles of NH,
gas”? The reaction 1s

(NH,,S0, + Ca(OH), — CaSO, + 2NH; + 2H,0O

26 What volume of O, at 0 90 atm and 75°F 1s needed to burn 21 O liters of
propane gas, CgH,, under the same conditions? The reaction 1s

C,H, + 50, > 3CO, + 4H,0

27 What volume of NO can react with 100 liters of air (21 0% O, by volume) at
the same conditions of temperature and pressure The reaction 1s

2NO + 0, — 2NO,

28 An interesting lecture demonstration 1s the Vesuvius ' experiment, in which
a small mound of (NH,),Cr,0,1s heated to commence decomposition It then
continues its decomposition unaided, gives off heat light and sparks, and
leaves a ‘mountain’ of Cr,0, The reaction 1s

(NH;Cry0, > Ny + 4H,0 + Cr,0,

What volume of N, at 730 torr and 31°C 1s produced from 1 60 moles of
(NHY,Cr,0;”

29 What volume of H,S at 720 torr and 85°F 1s needed for the precipitation of the
bismuth 1n 50 0 g of BiCl;? The reaction 1s

2Bi1Cl; + 3H,S — B1,S; + 6HCL

30 What volume of H,S at 740 torr and 20°C 1s needed to precipitate the nickel
from 50 0 g of Ni;(PQ,), 7H,0 as N1S?

31 HCN gas 1s fatal at a concentration of 1 part per 500 by volume and 1s very
dangerous within one hour at a concentration of 1 part per 10,000 by volume
What weight of NaCN 1s needed to fill a classroom 20 ft x 15 ft x 9 ft with
HCN at a concentration of 1 part per 10,000” (The barometric pressure 1s 740
torr, and the temperature 1s 80°F ) The reaction 1s

2NaCN + H,SO, — Na,SO, + 2HCN

32 (a) How many g